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Outline of the tutorial

Tarski’s Undefinability of Truth (TUT), and the use of partial truth
predicates in establishing the essential unboundedness of inductive sequential
theories (such as PA and ZF).

Rudiments of sequential theories, and the proof of incompleteness of
boundedly axiomatizable seqential theories formulated in a finite language.

More incompleteness results, and a pointer to some new completeness
results.
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Semantic form of TUT

Let L be a language (signature), and M be an L-structure. Also let
φ 7→ #(φ) ∈ M is an arbitrary mapping of unary L-formulae φ = φ(x) into
M.

Theorem. (Semantic Form of TUT) There is no binary L-formula T (x , y)
such that for all unary L-formulae: M |= ∀x (T (x ,#(φ))↔ φ(x)) .

Proof. Suppose not and consider R(x) = ¬T (x , x). Then:
(1)M |= ∀x (T (x ,#(R))↔ R(x)) .

If r := #(R), by (1) and the definition of R we obtain:
(2)M |= T (r , r)↔ R(r)↔ ¬T (r , r), contradiction. □

The above proof is reminiscent of the proof of Russell’s Paradox (1901), and
of the proof of Cantor’s theorem (1891) on nonexistence of a surjection of a
set X onto P(X ).
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Kripke’s general formulation

Source: p.66 of Kripke’s Lecture Notes on Elementary Recursion Theorem, Princeton, 1996
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Semantic form of TUT and incompleteness

Assume φ 7→ #(φ) ∈ ω, where φ ∈ SentLPA .

Let TA (true arithmetic) denote:

{#(φ) : φ ∈ SentLPA , (ω,+, ·) |= φ}.

Corollary. (Incompleteness of PA) TA is not definable in (ω,+, ·).

Corollary. TA is not axiomatizable by a subtheory of itself the set of whose
#-codes is definable in (ω,+, ·). Hence PA is incomplete.
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Semantic form of TUT, cont’d

Let Formn
L = the set of n-ary L-formulae, and supposeM is an L-structure

with a pairing function ⟨·, ·⟩. Also assume that the coding φ 7→ #(φ) ∈ M is
1-1. In this context, the (codes of) sentences in the elementary diagram of
M can be split into:

ED+(M) = {⟨#(φ), ⟨a1, ..., an⟩⟩ ∈ M :M |= φ(a1, ..., an), φ ∈ Formn
L},

ED−(M) = {⟨#(φ), ⟨a1, ..., an⟩⟩ ∈ M :M |= ¬φ(a1, ..., an), φ ∈ Formn
L}.

Corollary. (Inseparability of positive and negative fragments of ED)
ED+(M) and ED−(M) are definably inseparable in M, i.e., there is no
M-definable D(parameters allowed) such that ED+(M) ⊆ D and
ED−(M) ∩ D = ∅.
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Role of parameters

If L is a finite language, then it is possible for Th(M) to be definable within an
L-structure M if parameters are allowed.

Example 1. Th(M) is parametrically definable in every recursively
saturated model M of arithmetic or set theory. To see this, consider the
recursive type p(x) consisting of biconditionals of the form φ↔ ⌜φ⌝ ∈ x ,
where φ ranges over the recursive list of sentences, and the mapping
φ 7→ ⌜φ⌝ ∈ ω is recursive.

Example 2. Let M be a well-founded model of ZF of uncountable
cofinality. Using the reflection theorem and the elementary chain theorem
we can show that there is some ordinal α of M such that:

VM
α ≺M.

By Tarski’s definability of truth, Th(VM
α ) is definable inM using the

parameter α.
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Syntactic formulation of TUT

Let T be an L-theory, and suppose n 7→ 𝕟 be an arbitrary mapping of ω
(natural numbers) into the set of closed L-terms (terms with no free
variables).

Fix an arbitrary 1-1 correspondence φ 7→ #(φ) between Form≤1
L and ω, and

let n 7−→ φn be its inverse.

The diagonal function δ : ω → ω is given by

δ(n) = #(φn(𝕟)).

A function f : ω → ω is said to be T -definable if there is an L-formula
θ(x , y) such that

∀n ∈ ω T ⊢ ∀y [θ(𝕟, y)↔ y = 𝕗(𝕟)] .

A subset P of ω is said to be T -definable if there is an L-formula ψ(x) such
that:

∀n ∈ P T ⊢ ψ(𝕟) and ∀n /∈ P T ⊢ ¬ψ(𝕟).
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Three relevant subtheories of PA
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Consequences of the syntactic formulation of TUT

Theorem 1. (Syntactic formulation of TUT, ver 1.)
Given a theory T , let VT = {#(φ) : T ⊢ φ}. Assuming that T is consistent,
then the diagonal function δ and the set VT are not both T -definable.

Corollary. (Syntactic formulation of TUT, ver. 2).
If T is a consistent L-theory such that δ is T -definable, then there is no
L-formula θ(x) such that for all L-sentences φ we have:

T ⊢ φ↔ θ(𝕟), where n = #(φ).

Corollary. If T is a consistent theory such that all total recursive functions
are T -representable, and φ 7→ #(φ) is recursive, then VT is not recursive.
In particular, T is incomplete.

Remark. If T interprets Robinson’s R (let alone Robinson’s Q) , then all
total recursive functions are T -definable.
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Proof of version 1 of TUT
Suppose not, thus there are formulae θ and ψ such that the following hold:

(1) ∀n ∈ ω T ⊢ ∀y [θ(𝕟, y)↔ y = 𝕣 ], where δ(n) = r .
(2) ∀n ∈ VT T ⊢ ψ(𝕟).
(3) ∀n /∈ VT T ⊢ ¬ψ(𝕟).
Choose m ∈ ω such that φm(x) = ∀y (θ(x , y)→ ¬ψ(y)), hence:

(4) φm(𝕞) = ∀y (θ(𝕞, y)→ ¬ψ(y)) .
If T ⊢ φm(𝕞), then by (1) and (4) we have T ⊢ ¬ψ(𝕜), where δ(m) = k .

If T ⊬ φm(𝕞), then #(φm(𝕞)) /∈ VT ; and by the definition of δ,

(5) δ(m) = #(φm(𝕞)).

So by (3) in this case we can also conclude that T ⊢ ¬ψ(𝕜). Thus we have shown:

(6) T ⊢ ¬ψ(𝕜).
By (1) and (6), T ⊢ ∀y (θ(𝕞, y)→ ¬ψ(y)). So by (4) and (5) δ(m) ∈ VT and
therefore by (2),

(7) T ⊢ ψ(𝕜).
This contradicts the assumption of consistency of T .
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Tarski’s 1953 abstract
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Tarski’s assessment

For discussion on the history of TUT, see:

R. Murawski, Undefinability of truth; the problem of priority: Tarski vs Gödel, History and Philosophy of
Logic (1988), Vol. 19, 153–160.

J. Woleński, Gödel, Tarski and Truth, Revue Internationale de Philosophie (2005) Vol. 59, pp. 459–490.
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The Σn-hierarchy of arithmetical formulas (1)
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The Σn-hierarchy of arithmetical formulas (2)
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The Σ∗n-hierarchy of formulas (1)

The Σ∗
n hierarchy measures the depth of quantifier alteration.
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The Σ∗n-hierarchy of formulas (2)
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MRDP (1)

Hilbert’s 10th problem (1900, among 23) was to find a general algorithm for
deciding, given any n and any polynomial f ∈ ℤ[x1, ..., xn], whether or not f
has a zero in ℤn.

MRDP Theorem (Matiyasevich, Robinson, Davis, Putnam, 1970).
A subset A of ℕ is recursively/computably enumerable if and only if A
is Diophantine, i.e., there exist polynomials p(x ,−→y ), q(x ,−→y ) ∈ ℕ[x ,−→y ]
such that:

n ∈ A⇐⇒ ∃−→y ∈ ℕ p(n,−→y ) = q(n,−→y ).

Consequently, the existential theories of ℕ and ℤ are undecidable, so
Hilbert’s problem has a negative answer.
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MRDP (2)

The MRDP theorem is provable in the fragment I∆0 + Exp of PA
(Gaifman-Dimitracopoulos, 1980).

By the MRDP-theorem each Σn-formula is equivalent to a Σ∗
n-formula in

I∆0 + Exp.

So for arithmetical theories that extend I∆0 + Exp the Σn hierarchy and the
Σ∗

n hierarchy coincide.
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A general question (1)

General Question (GQ). Suppose T0 is a consistent theory. Does T0 have
a completion T that there is some n ∈ ω and some A ⊆ Σ∗

n such that A
axiomatizes T?

Let ℕ be the standard model of PA. For T = TA = Th(ℕ) the answer to
GQ is in the negative. This follows from the Arithmetical Hierarchy
Theorem of Kleene (1943) and Mostowski (1946) that states that
Σℕ

n ⊊ Σℕ
n+1 for each n ∈ ω.

For T = PA, the negative answer follows from a theorem of Rabin (1961)
that states that for for each n ∈ ω no consistent extension of PA (in the
same language) is axiomatized by a set of Σn-sentences.

Rabin’s result refines an earlier theorem of Ryll-Nardzewski (1952) that
states that no consistent extension of PA is finitely axiomatizable.
Ryll-Nardzewski and Rabin both employed model-theoretic arguments relying
on nonstandard elements to prove the aforementioned results.
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Model theoretic proof of Rabin’s Theorem (1)

Given a model of arithmetic M, ThΠn(M) = {φ ∈ Πn :M |= φ}.

PAΠn = {φ ∈ Πn : PA ⊢ φ}.

IΣn ⊊ PAΠn+2 .

For M |= PA and n ∈ ω, Kn(M) is the submodel ofM whose universe
consists of elements of M that are definable in M by a Σn-formula.

M≺Πn N means that Πn-formulae are absolute in the passage between the
arithmetical structures M and N .

BΣn consists of universal generalizations of formulae of the following form,
where ψ is a Σn-formula:

(∀x ∈ a ∃y ψ(x , y))→ (∃b ∀x ∈ a ∃y ∈ b ψ(x , y)) ,

where the parameters of ψ are suppressed.
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Model theoretic proof of Rabin’s Theorem (2)

Theorem (Kirby-Paris, Lessan 1978). Suppose n ∈ ω, n ≥ 1, and M is a
nonstandard model of PA, then:

(a) Kn(M) ≺Πn M, hence Kn(M) |= ThΠn+1(M).

(b) If Kn(M) is nonstandard, then Kn(M) |= PAΠn+1 + IΣn−1 + ¬BΣn.

The proof of part (a) involves a book-keeping argument together with a trick to
collapse two existential quantifiers into one.

The proof of part (b) involves the Σn-definability of Σn-satisfaction within models
of PA.

22 / 44



Proof theoretic proof of Rabin’s Theorem (1)

Theorem. (Mostowski Reflection Theorem 1952) For each n ∈ ω,
Con(TrueΣn) is provable in PA.

Mostowski’s Reflection Theorem can be proved using the fact proved by
Gentzen 1935 that every FOL proof can be replaced with another proof (with
the same assumption and conclusion) that has the subformula property.

The proof of Mostowski’s Reflection Theorem uses the full induction scheme
of PA in the verification that, for each n separately, PA can verify that
TrueΣn is closed under proofs with the subformula property.

As we will see, Rabin’s theorem can be established by using Mostowski’s
Reflection Theorem together with Gödel’s second incompleteness theorem.
This second proof gives less information.
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Proof theoretic proof of Rabin’s Theorem (2)
Here is more detail on the second proof of Rabin’s theorem:

Suppose to the contrary that T is an extension of PA that is axiomatized by
a collection of A Σn-sentences for some n ∈ ω.

We can find an arithmetical formula, denoted PrfTruen(π, x) such that for
each standard L-sentence ψ and standard π, and each modelM of PA, we
have:

(∗) M |= PrfTruen(π, ⌜ψ⌝) iff π is (a code for) a proof of ψ from

TrueMn := {φ :M |= Truen(⌜φ⌝)}.

Let
τ(x) := ∃yPrfTruen(y , x).

We will arrive at a contradiction by verifying that for all arithmetical
sentences ψ, we have: T ⊢ ψ ↔ τ(⌜ψ⌝) (thus contradicting TUT).

The left-to-right direction follows from (*). The other direction follows from
(*) and Mostowski’s Reflection Theorem.
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Telegraphic History of Definable Partial Truth Predicates:

Turing, Post, Kleene, Mostowski (1940s) – 0(n) is Σn-complete.

Mostowski (1952) – PA supports a definable truth predicate for Σn-formulae.

Montague (1961) – Every inductive sequential theory supports a definable
truth predicate for Σ∗

n-formulae.

Levy (1965) – ZF supports a definable truth predicate for ΣLevy
n -formulae.

Gaifman and Dimitracopoulos (1980) – I∆0 + Exp, supports a definable
truth predicate for Σn-formulae.

Pudlák (1984, 1998) – Every sequential theory supports a definable truth
predicate for Depthn-formulae.

Visser (1994, 2019) – Every sequential theory supports a definable truth
predicate for Σ∗

n-formulae.
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Montague’s generalization

As shown by Montague (1961) Rabin’s result can be generalized from PA to
all inductive sequential theories T in a finite language. In the setting of
Montague’s result the relevant hierarchy is based on
quantifier-alternations-depth.

Canonical examples of inductive sequential theories include all extensions of
PA, Z (Zermelo set theory), Z2 (second order arithmetic), and KM
(Kelley-Morse theory of classes).

Theorem. (Montague Reflection Theorem 1959) Suppose T is an inductive
sequential theory formulated in a finite language. For each n ∈ ω,
Con(TrueΣ∗

n
) is provable in T .
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Inductive sequential theories (1)

At first approximation, a theory is sequential if it supports a modicum of
coding machinery to handle finite sequences of all objects in the domain of
discourse. Gödel (1931) used the Chinese Remainder Theorem to show that
PA is sequential. Jeřábek (2012) showed that PA− is sequential, and Visser
(2008) showed that Q is not sequential.

It is known that T is sequential iff T has a definitional extension to
Adjunctive Set Theory. The original definition of sequentiality due to Pudlák
is as follows: A theory T is sequential if there is a formula N(x) (read as “x
is a number”) , together with appropriate formulae providing interpretations
of equality, and the operations of successor, addition, and multiplication for
elements satisfying N(x) such that T proves the translations of the axioms
of Q when relativized to N(x); and additionally, there is a formula β(x , i ,w)
(whose intended meaning is that x is the i-th element of a sequence w) such
that T proves that every sequence can be extended by any given element of
the domain of discourse.
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Inductive sequential theories (2)

The sequentiality axiom:

∀w , x , k ∃w ′ ∀i , y
[
[N(k) ∧ i ≤ k]→

[
β(y , i ,w ′)↔

[i < k ∧ β(y , i ,w)] ∨ [i = k ∧ y = x ]

]]
.

An inductive sequential theory T is a sequential theory within the full scheme of
induction over N is provable. This is equivalent to saying that for all M |= T ,
and any nonempty parameterically definable subset D ofM, D ∩ NM has a least
element.
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A Question of Lempp and Rossegger

PA− is the finitely axiomatized fragment of PA whose axioms describe the
non-negative substructure of discretely ordered rings (with no instance of the
induction scheme, hence the minus superscript).

Question. Is there a consistent completion of T = PA− that is axiomatized
by a set of sentences of bounded quantifier complexity?

The above question was posed by Steffen Lempp and Dino Rossegger in the
context of their recent joint work [AGLRZ] with Uri Andrews, David
Gonzalez, and Hongyu Zhu, in which they establish:
Theorem. The following are equivalent for a complete first-order theory T :
(1) The set of models of T is Π0

ω-complete under Wadge reducibility (i.e.,
reducibility via continuous functions).

(2) T does not admit a first-order axiomatization by formulae of bounded
quantifier complexity.
[AGLRZ] The Borel complexity of the class of models of first-order theories, arXiv:2402.10029[math.LO]
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Preliminaries to "Fact F"
The following result (FACT F) was established by Visser (1993, 2019); this
result refines the work of Pudlák (1984, 1998) in which logical depth (length
of the longest branch in the formation tree of the formula) is used as a
measure of complexity instead of the depth of quantifier alternations
complexity.

The following conventions are at work in the statement of part (a) of Fact F
for a given fixed interpretation N of Q in T .

(1) An L-formula I = I (x) is a T -provable definable cut if T proves that the
set of objects satisfying I (x) is an initial segment of N -numbers that
satisfies I∆0 +Ω1, where Ω1 is the axiom that states that the function
x 7→ x⌊log2 x⌋ is a total function.1

(2) Given a T -provable definable cut I = I (x), the expression “x is a
Σ∗

n-formula in I ” is the conjunction of σn(x) and I (x), where σn(x) is a
designated L-formula that expresses “x is the code of a Σ∗

n-formula”.

1 The treatment of syntax can be carried out fully within such a cut I , for example I is closed under conjunction
of formulae in I . It is well-known that Q has a definable cut that satisfies I∆0 + Ω1, see Theorem 5.7 of [HP]. Thus
a T -provable definable cut as defined here exists in every sequential theory.
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Fact F

Fact F. Suppose T is a sequential theory T formulated in a finite language L,
and n ∈ ω. Fix some interpretation N of Q in T .

(a) There is a T -provable definable cut In of N and a formula Satn(x , y) such
that, provably in T , Satn satisfies the Tarskian compositional clauses whenever x
is a Σ∗

n-formula in In and for all variable assignments y .

(b) There is a formula Truen(x) such that, provably in T, Truen(x) is extensional2,
i.e., it respects the equivalence relation representing equality in the interpretation
N ; and for all models M |= T , and for all Σ∗

n-sentences ψ, we have:

M |= (ψ ↔ Truen(⌜ψ⌝)) .

2Without this extensionality stipulation, the numeral does not necessarily work as a term.
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Theorem A

Theorem A. For any fixed n ∈ ω, every consistent sequential theory formulated
in a finite language that is axiomatized by a set of Σ∗

n-sentences is incomplete.

Proof of Theorem A. Suppose not, and let T be consistent completion of
sequential theory formulated in a finite language L. Then by the definition of
sequentiality T is also sequential. Suppose to the contrary that for some n ∈ ω,
T is axiomatized by a set of Σ∗

n sentences, i.e., suppose (1) below:

(1) For n ∈ ω, there is a set A of Σ∗
n sentences such that for all L-sentences ψ,

ψ ∈ T iff A ⊢ ψ.

Our proof by contradiction of Theorem A will be complete once we verify Claim
♡ below since it contradicts TUT.

CLAIM ♡. There is a unary L-formula φ(x) such that for all L-sentences ψ,
T ⊢ ψ ↔ φ(⌜ψ⌝).
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Theorem A (cont’d)
Since T is sequential, we can find an L-formula, denoted PrfTruen(π, x) such that
for each standard L-sentence ψ and standard π, and each modelM of T , we
have:

(2)M |= PrfTruen(π, ⌜ψ⌝) iff π is (a code for) a proof of ψ from

TrueMn := {φ :M |= Truen(⌜φ⌝)}.

Our proposed candidate of φ(x) for establishing Claim ♡ is the following formula
ρ(x); our choice of the letter ρ indicates the fact that the formula expresses
Rosser-provability (from the true Σ∗

n sentences).

ρ(x) := ∃y [PrfTruen(y , x) ∧ ∀z < y ¬PrfTruen(z ,¬x)] .

Thus our goal is to show that for all L-sentences ψ, T ⊢ ψ ↔ ρ(⌜ψ⌝). It suffices
to show that for each modelM of T , M |= ψ ↔ ρ(⌜ψ⌝). For the rest of the
proof, let M |= T . We will first show:

(3) For all L-sentences ψ, M |= ψ → ρ(⌜ψ⌝). To show (3), assume ψ holds in

M. Let n and A be as in (1), and note that A ⊆ TrueMn .
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Theorem A (concluded)
By the assumptions about T , there are finitely many sentences α1, ..., αn in A
such that {α1, ..., αn} ⊢ ψ. Let π0 ∈ ω be (the code of) a proof of ψ from
{α1, ..., αn} . Thanks to (2) we have: M |= PrfTruen(π0, ⌜ψ⌝). The assumption
of consistency of T coupled with (2) yields: M |= ∀z < π0 ¬PrfTruen(z , ⌜¬ψ⌝).
Hence (3) holds.

To complete the proof of CLAIM ♡, we need to show that M |= ¬ψ → ¬ρ(⌜ψ⌝)
for all L-sentences ψ. For this purpose assume M |= ¬ψ. By putting (1) and the
assumption thatM |= ¬ψ, we conclude that there is a standard proof π0 of ¬ψ
from TrueMn , which by (2) implies:

(4) For some π0 ∈ ω,M |= PrfTruen(π0, ⌜¬ψ⌝).

To see that M |= ¬ρ(⌜ψ⌝) suppose to the contrary thatM |= ρ(⌜ψ⌝). By the
choice of ρ, this means:

(5) For some m0 ∈ M, M |= PrfTruen(m0, ⌜ψ⌝) ∧ ∀z < m0 ¬PrfTruen(z , ⌜¬ψ⌝).

The key observation is that putting (2) with the assumptionM |= ¬ψ allows us
to conclude that the m0 in (5) must be a nonstandard element of M. Thus by
standardness of π0 of (4) and the ordering properties of ‘natural numbers’ in M,
M |= π0 < m0, which contradicts the second conjunct of (5). □
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A more general form of Theorem A

Theorem A+. Let T be a computably enumerable sequential theory formulated
in a finite language L and suppose A is a collection of L-sentences such that
A ⊆ Σ∗

n for some n ∈ ω and T ∪ A is consistent. Then T ∪ A is incomplete.
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Theorem B and B+

Theorem B. For each n ∈ ω every consistent extension of I∆0 + Exp (in the
same language) that is axiomatized by a set of Σn-sentences is incomplete.

Proof. As shown by Gaifman and Dimitracopoulos (1980) for each n ∈ ω there is
a formula SatΣn such that, provably in I∆0 + Exp, SatΣn satisfies compositional
clauses for all Σn-formulae. In particular there is a formula TrueΣn(x) such that
for all modelsM of I∆0 + Exp, and for all Σn-sentences ψ, ψ ∈ TrueMΣn

iff
M |= ψ. We can now repeat the proof strategy of Theorem A with the use of
TrueMΣn

instead of TrueMn .

Alternatively, invoke the provability of the MRDP theorem in I∆0 + Exp. By the
MRDP-theorem each Σn-formula is equivalent to a Σ∗

n-formula in I∆0 + Exp, so
Theorem A applies. □

We can similarly obtain an analogous strengthening Theorem B+ of Theorem B.

Theorem A+. Let T be a computably enumerable extension of I∆0 + Exp (in
the same language) and suppose A is a collection of arithmetical sentences such
that A ⊆ Σn for some n ∈ ω and T ∪ A is consistent. Then T ∪ A is incomplete.

36 / 44



Analogue for set theory (1)

The set-theoretical analogue of Theorem A is Theorem C below concerning the
well-known Levy hierarchy of formulae of set theory, which is the set-theoretical
counterpart of the Σn-hierarchy of arithmetical formulae. Theorem C can be
proved with the same strategy used in the proof of Theorem A (and the first
proof of Theorem B) thanks to the availability of the relevant definable partial
satisfaction classes in KP.

Here KP is Kripke-Platek set theory with the scheme of foundation limited to
ΠLevy

1 -formulae (equivalently: the scheme of ∈-induction for ΣLevy
1 -formulae).

Thus in contrast to Barwise’s KP in his book "Admissible Sets and Structures",
which includes the full scheme of foundation, our version of KP is finitely
axiomatizable. Note that the axiom of infinity is not among the axioms of KP.

The existence of definable partial satisfaction classes in KP follows from two
facts: (1) KP can prove that every set is contained in a transitive set; and (2) KP
can define the satisfaction predicate for all of its internal set structures (the
proofs of both of these facts can be found in Barwise’s book; the proofs therein
make it clear that only ΠLevy

1 -Foundation is invoked).
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Analogue for set theory (2)

Theorem C. For each n ∈ ω every consistent completion of KP (in the same
language) that is axiomatized by a set of ΣLevy

n -sentences is incomplete.

Similar to Theorems A and B, Theorem C can be readily generalized to:

Theorem C+. Let T be a computably enumerable extension of KP (in the same
language) and suppose A is a collection of set-theoretical sentences such that
A ⊆ ΣLevy

n for some n ∈ ω and T ∪ A is consistent. Then T ∪ A is incomplete.

Remark. In the above theorems KP can be replaced by "Mac Lane set theory”,
which is Zermelo set theory with comprehension restricted to ∆0-formulas
together with the sentence "every set is contained in a transitive set”.
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Connected ideas

SOURCE: A MATHOVERFLOW ANSWER BY Emil Jeřábek (2016);

https://mathoverflow.net/questions/256785/a-completion-of-zfc

As shown by Mateusz Łełyk and Bartosz Wcisło in their recent paper
Universal properties of truth Theorem A can also be established using the
machinery of so-called (n, k)-flexible formulas.
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Conceptual/Pedagogical take-away

Let R be the well-known fragment of PA within which all recursive functions are
representable.

One can prove the (first) incompleteness theorem for a consistent computably
enumerable extension T of R, without any extra soundness assumptions about T ,
by first proving the syntactic version of Tarski’s undefinability of truth theorem,
and then the incompleteness of T can be demonstrated using a reductio ad
absurdum by verifying that the completeness of T implies that Rosser provability
from T yields a truth definition. Technically, this falls under our Theorem A+, by
setting A = ∅ in that theorem.

Note that in contrast to the usual proof of the incompleteness theorem using the
fixed point theorem, our proof is not constructive, i.e., it does not yield an
algorithm that takes a description of a consistent computably enumerable
extension T of R as input and outputs a sentence that is independent of T .
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Why L cannot be infinite (1)

Consider the theory U = CT−
ω [IΣ1] of ω-iterated compositional truth over

IΣ1 (without any induction for formulae using nonarithmetical symbols,
hence the minus superscript) formulated in an extension of the language LA
of arithmetic with infinitely many predicates {Tn+1 : n ∈ ω}, and
Tarski-style compositional axioms that stipulate that Tn+1 is compositional
for all Ln-formulae, with L0 = LA and Ln+1 = Ln ∪ {Tn+1}.

Since bi-conditionals of form φ←→ Tn+1(⌜φ⌝) are provable in U for every
Ln-sentence (thanks to the available composition axioms) ANY complete
extension V of U is axiomatized by U (which is of bounded complexity)
together with atomic sentences of form Tn+1(⌜φ⌝) where φ ∈ V and φ is an
Ln-sentence, thus U axiomatizable by a set of axioms of bounded quantifier
complexity.

By adding one axiom (internal induction) to the above theory we can get a
theory of bounded complexity whose deductive consequence includes PA,
and every completion of which is boundely axiomatizable.
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Why L cannot be infinite (2)

Alternatively, starting with any theory T formulated in a language L, we can
apply a process known in model theory as Morleyization/Atomization to
obtain an extension T+ of T , formulated in an extension L+ of L, such that
T+ is axiomatized by adding a collection of sentences of bounded quantifier
depth to T , and T+ has elimination of quantifiers in the sense that for each
L+-formula φ(x1, ..., xn), there is an n-ary predicate Pφ ∈ L+ such that the
equivalence φ(x1, ..., xn)↔ Pφ(x1, ..., xn) is provable in T+.
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Some Off Shoots

Question. Is it possible for a consistent completion of Q to be axiomatized
by a collection of sentences of bounded quantifier-depth? Conjecture: Yes.

Recall that Theorem B concerned the usual Σn hierarchy of arithmetical
formulae and theories extending I∆0 + Exp. A natural question is to explore
the extent to which textrmI∆0 + Exp can be weakened.

In joint work with Albert Visser and Mateusz Łełyk (forthcoming) we show
the following result.

Theorem. There is a consistent completion of PA− (in the same language)
that is axiomatized by single sentence together with a set of Σ1-sentences.

The result above can be extended to the stronger theory PA− + Collection.

Indeed, the technique can be pushed to even obtain a similar result for the
theory IOpen + Collection.
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Thanx!
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