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KP and KPl

Axioms of KP in the language L = {∈, /∈}:
1 Logical Axioms: Γ,A,¬A for any formula A,

2 Leibniz Principle: Γ, a = b ∧ B(a) → B(b) for any formula B,

3 Pair: Γ,∃z(a ∈ z ∧ b ∈ z),

4 Union: Γ,∃z∀y ∈ a∀x ∈ y(x ∈ z),

5 ∆0-Separation:

Γ,∃y [∀x ∈ y(x ∈ a ∧ B(x)) ∧ ∀x ∈ a(B(x) → x ∈ y)],

for any ∆0-formula B.

6 Class Induction: Γ,∀x [∀y ∈ xB(y) → B(x)] → ∀x B(x)
for any formula B,

7 Infinity: Γ,∃x [∃z ∈ x(z ∈ x) ∧ ∀y ∈ x∃z ∈ x(y ∈ z)],

8 ∆0-Collection: Γ,∀x ∈ a∃yB(x , y) → ∃z∀x ∈ a∃y ∈ z B(x , y) for any
∆0-formula B.
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Axioms of KPl in the language L′ = {∈, /∈,Ad ,¬Ad}:
1 Logical Axioms,

2 Leibniz Principle,

3 Pair,

4 Union,

5 ∆0-Separation,

6 Class Induction,

7 Infinity,

8 Ad1: Γ,∀x [Ad(x) → ω ∈ x ∧ Tran(x)],

9 Ad2: Γ,∀x∀y [Ad(x) ∧ Ad(y) → x ∈ y ∨ x = y ∨ y ∈ x ],

10 Ad3: Γ,∀x [Ad(x) → (Pair)x ∧ (Union)x ∧ (∆0 − Sep)x ∧ (∆0 − Coll)x ],

11 Lim: Γ,∀x∃y [Ad(y) ∧ x ∈ y ].
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The rules of inference are the following.

Γ,A Γ,B
(∧)

Γ,A ∧ B

Γ,A
(∨)

Γ,A ∨ B

Γ,B
(∨)

Γ,A ∨ B

Γ, a ∈ b ∧ B(a)
(b∃)

Γ,∃x ∈ b B(x)

Γ,B(a)
(∃)

Γ,∃x B(x)

Γ, a ∈ b → B(a)
(b∀)

Γ,∀x ∈ b B(x)

Γ,B(a)
(∀)

Γ,∀x B(x)

Γ,A Γ,¬A
(Cut)

Γ
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The Main Theorem

Definition

Let X be any set. We define for every ordinal α the set Lα(X ) as:

L0(X ) = TC ({X}),
Lα+1(X ) = {Y ⊆ Lα(X ) : Y is definable over ⟨Lα(X ),∈⟩},
Lγ(X ) =

⋃
α<γ Lα(X ) if γ is a limit.

Theorem (Main Theorem)

Let f be a set-recursive function such that KPl proves that f is total and
uniformly Σ-definable in any admissible set. Then, there is some natural number
n such that

V ⊨ ∀x(f (x) ∈ Ĝn(x)).

The premises of the theorem say:

KPl ⊢ Ad(u) → [∀x ∈ u∃!y ∈ u Af (x , y)
u].
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The Ordinal Notation System

The proof of the main theorem relies on the (relativized) ordinal analysis of KPl.
The ordinal analysis of a theory T assigns to T the ordinal α, the proof-theoretic
ordinal of T : α is the supremum of the ordinals β such that T proves transfinite
induction up to β.

The set X is a fixed set. The set-theoretic rank of X is θ. The sequence
⟨Ωn : n ≤ ω⟩ enumerates the first “ω + 1-many” uncountable regular cardinals κ
such that κ > θ.

Each LΩn(X ) is admissible.

0, (1, 2, . . . , ω, ω + 1, . . . ), Γ0, Γ1, Γ2, . . . , Γθ, (Γθ+1, . . . ),Ω0,Ω1, . . . ,Ωω.

For each β, we have δ, ζ < Γβ → φδ(ζ) < Γβ .
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Definition

For every α, for every n < ω, we define Bn(α) by induction on n.

B0(α) is the closure of {0} ∪ {Γβ : β ≤ θ} ∪ {Ωm : m ≤ ω} under +, φ·(·)
and ψk ↾ α for every k < ω.

Bn+1(α) is the closure of Ωn ∪ {Ωm : m ≤ ω} under +, φ·(·) and ψk ↾ α for
every k < ω.

The ordinal collapsing function ψn is defined as ψn(α) = min{β : β /∈ Bn(α)}.
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Lemma
For every ordinal α and every natural number n, we have:

1 ψn(α) is a strongly critical ordinal,

2 Γθ+1 ≤ ψ0(α) < Ω0 and Ωn < ψn+1(α) < Ωn+1.

A picture of Bn(α):

0, 1, . . . , ω, ω + 1, . . . ,Ωn,Ωn + 1, . . ., ψn+1(α), ψn+1(α) + 1, . . . ,
Ωn+1, . . ., . . . ,Ωn+2, . . ., . . . ,Ωω, . . ., . . .

Anton Fernández Dejean Total set functions of KPl 9 / 30



Lemma
For every ordinal α and every natural number n, we have:

1 ψn(α) is a strongly critical ordinal,

2 Γθ+1 ≤ ψ0(α) < Ω0 and Ωn < ψn+1(α) < Ωn+1.

A picture of Bn(α):

0, 1, . . . , ω, ω + 1, . . . ,Ωn,Ωn + 1, . . ., ψn+1(α), ψn+1(α) + 1, . . . ,
Ωn+1, . . ., . . . ,Ωn+2, . . ., . . . ,Ωω, . . ., . . .

Anton Fernández Dejean Total set functions of KPl 9 / 30



Definition
Let α be an ordinal. We define the normal form of α as follows.

1 α =NF α1 + · · ·+ αn iff α = α1 + · · ·+ αn, n > 1, where the ordinals
α1, . . . , αn are written in normal form and are additive principal and
α1 ≥ · · · ≥ αn,

2 α =NF φα1α2 iff α = φα1α2 with α1, α2 < α and α1, α2 are written in
normal form,

3 α =NF ψn(α1) iff α = ψn(α1) with α1 ∈ Bn(α1) and α1 is written in normal
form.
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Definition

We define T (θ) as the set of strings in the language
{0,+, φ} ∪ {Γβ : β < θ} ∪ {Ωn : n ≤ ω} ∪ {ψn : n < ω} corresponding to ordinals
written in normal form from the closure of {0} ∪ {Γβ : β < θ} ∪ {Ωn : n ≤ ω}
under +, φ, ψn for n < ω.

Theorem

The set T (θ) and the order ≺ on T (θ) induced by the ordering of ordinals are
primitive recursive in θ.

From now on, we consider that all the ordinals belong to T (θ).
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The system RSl(X )

Definition

The set T of RSl(X )-terms is defined as follows. Each term has an ordinal level.

u ∈ T for every u ∈ TC ({X}) and |u| = Γrank(u).

Lα(X ) ∈ T for every α ≤ Ωω and |Lα(X )| = Γθ+1 + α.

[x ∈ Lα(X ) : B(x , s1, . . . , sn)
Lα(X )] ∈ T for every α < Ωω, for every

KPl-formula B(x , y1, . . . , yn) and every s1, . . . , sn ∈ T with
|s1|, . . . , |sn| < Γθ+1 + α. Moreover,
|[x ∈ Lα(X ) : B(x , s1, . . . , sn)

Lα(X )]| = Γθ+1 + α.

In particular, we have |LΩn(X )| = Ωn for every n ≤ Ωω.
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Definition

The RSl(X )-formulas are exactly the KPl-formulas replacing free variables by
RSl(X )-terms and restricting all unbounded quantifiers to RSl(X )-terms.
The RSl(X )-formulas of the form u ∈ v or u /∈ v are called basic.

We will say that a formula A(s1, . . . , sn)
LΩn (X ) is ΣΩn iff A(x1, . . . , xn) is a KPl

Σ-formula and |s1|, . . . , |sn| < Ωn.

For example, from the KPl-formula ∀x∈y ∃z (x∈z) we get the ΣΩ1-formula
∀x∈LΩ0(X )∃z∈LΩ1(X ) (x∈z).
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We will use the following abbreviations.

Definition
1 s = t will stand for ∀x ∈ s(x ∈ t) ∧ ∀x ∈ t(x ∈ s).

2 ¬A is obtained from A by replacing ∈ by /∈ and vice-versa, ∨ by ∧ and
vice-versa, ∀ by ∃ and vice-versa and Ad(·) by ¬Ad(·) and vice-versa.

3 A → B will stand for ¬A ∨ B.

4 Let s and t be terms such that |s| < |t|. For ◦ ∈ {∧,→}, we define

s ∈̇ t ◦ A(s, t) =


u ∈ v ◦ A(u, v) if s ∈ t ≡ u ∈ v ,

A(s, t) if t = Lα(X ),

B(s) ◦ A(s, t) if t = [x ∈ Lα(X ) : B(x)].
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Definition

An operator is a function H : P(ON) → P(ON) such that for every
Y ,Y ′ ∈ P(ON) the following conditions are satisfied.

1 {0} ∪ {Γβ : β ≤ θ + 1} ∪ {Ωi : i ≤ ω} ⊆ H(Y ).

2 Let α =NF α1 + · · ·+ αn. Then, α ∈ H(Y ) iff α1, . . . , αn ∈ H(Y ).

3 Let α =NF φα1α2. Then, α ∈ H(Y ) iff α1, α2 ∈ H(Y ).

4 Y ⊆ H(Y ).

5 If Y ⊆ H(Y ′) then H(Y ) ⊆ H(Y ′).

Moreover, H will often denote H(∅).
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Let H be an operator and let Γ be a set of formulas. We have that Γ is derived by
an H-controlled derivation with ordinal α whenever {α} ∪ k(Γ) ⊆ H and one of
the following axioms or rules can be applied.

Axioms:

H α
Γ, u ∈ v for any u, v ∈ TC ({X}) such that u ∈ v ,

H α
Γ, u /∈ v for any u, v ∈ TC ({X}) such that u /∈ v .
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Rules:

H α0
Γ,A ∧ B,A H α1

Γ,A ∧ B,B
(∧)

H α
Γ,A ∧ B

α0, α1 < α

H α0
Γ,A ∨ B,A

(∨)
H α

Γ,A ∨ B
α0 < α

H α0
Γ,A ∨ B,B

(∨)
H α

Γ,A ∨ B
α0 < α
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H α0
Γ, r ∈ t, s ∈̇ t ∧ r = s

(∈)
H α

Γ, r ∈ t

α0 < α,
|s| < |t|,
|s| < Γθ+1 + α,
r ∈ t not basic.

H[s]
αs

Γ, r /∈ t, s ∈̇ t → r ̸= s for all |s| < |t|
(/∈)

H α
Γ, r /∈ t

αs < α,
r ∈ t not basic.
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H α0
Γ,∃x ∈ t B(x), s ∈̇ t ∧ B(s)

(b∃)
H α

Γ,∃x ∈ t B(x)

α0 < α,
|s| < |t|,
|s| < Γθ+1 + α.

H[s]
αs

Γ,∀x ∈ t B(x), s ∈̇ t → B(s) for all |s| < |t|
(b∀)

H α
Γ,∀x ∈ t B(x)

αs < α
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H α0
Γ,Ad(t), t = LΩn(X )

(Ad)
H α

Γ,Ad(t)

α0 < α,
n ≤ ω,
Ωn < |t|.

H αn
Γ,¬Ad(t), t ̸= LΩn(X ) for all n ≤ ω

(¬Ad)
H α

Γ,¬Ad(t)
αn < α
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H α0
Γ,A H α0

Γ,¬A
(Cut)

H α
Γ

α0 < α

H α0
Γ,∃z ∈ LΩn(X ) Az ,ALΩn (X )

(Refn)
H α

Γ,∃z ∈ LΩn(X ) Az

α0,Ωn < α,
A is a Σ formula.
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Definition
We define the rank of a term or formula by recursion.

rk(u) = Γrank(u),

rk(Lα(X )) = Γθ+1 + ω · α,

rk([x ∈ Lα(X ) : B(x)]) = max(Γθ+1 + ω · α+ 1, rk(B(∅)) + 2),

rk(s ∈ t) = rk(s /∈ t) = max(rk(s) + 6, rk(t) + 1),

rk(Ad(t)) = rk(¬Ad(t)) = rk(t) + 5,

rk(A ∨ B) = rk(A ∧ B) = max(rk(A), rk(B)) + 1,

rk(∃x ∈ t A(x)) = rk(∀x ∈ t A(x)) = max(rk(t), rk(A(∅)) + 2).

Lemma

Let A be a formula. Then rk(B) < rk(A) for any premise B of A.
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Definition

We will write H ρ
α
Γ whenever H α

Γ and all the cut formulas in the proof have
rank strictly less than ρ.

Lemma (Predicative Cut Elimination)

Let α ∈ H. Let ρ be an ordinal such that Ωn /∈ [ρ, ρ+ ωα) for any n < ω. If

H
ρ+ωα

β
Γ then H ρ

φαβ
Γ.

Example 1. Let H
Ωn+ω

α

β
Γ with Ωn < Ωn + ωα < Ωn+1. Then, we get

H Ωn+1

φαβ
Γ.

Example 2. Let H
ωα

β
Γ with α < Ω0. Then, we get H 0

φαβ
Γ.
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Definition
For any set of ordinal Y we let

Hβ(Y ) =
⋂

{Bn(α) : Y ⊆ Bn(α) with β < α and n < ω}.

We recall that ALΩm (X ) is ΣΩm iff A is a KPl Σ-formula and the terms replacing
free variables have level less than Ωm.

Theorem (Collapsing Theorem)

Let n ≤ ω and let m < ω. Let Γ be a set of ΣΩm -formulas and let α and β be
ordinals with β ∈ Hβ .

If Hβ Ωn+1

α
Γ then Hβ+ωΩn+1+α

ψm(β+ω
Ωn+1+α)

ψm(β+ω
Ωn+1+α)

Γ.
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The Embedding Theorem

Lemma
Let H be any operator.

For every axiom Ax of KPl, we have H ρ
α
(Ax)LΩω (X ) where ρ ≤ Ωω and

α ≤ Ωω · ω2.

Each rule of KPl can be embedded in RSl(X ). The application of an embedded
KPl rule increases the cut-complexity of the derivation by a finite number.

Theorem (Embedding)

Let Γ(a1, . . . , an) be a finite set of formulas with all the free variables displayed
such that KPl ⊢ Γ(a1, . . . , an). Then, there is some m < ω such that for any
operator H and any terms s1, . . . , sn controlled by H we have

H Ωω+m

Ωω·ωm

Γ(s1, . . . , sn)
LΩω (X ).
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The proof of the Main Theorem

Definition
We define the ordinal en by recursion on n as follows:

e0 = Ωω + 1,

en+1 = ωen .

Now, we define for each n < ω the set Ĝn(x) = Lψ0(en+3)(x).

Lemma

For every natural number n we have en ∈ B0(en+1).
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For every natural number n we have en ∈ B0(en+1).
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Theorem (Main Theorem)

Let f be a set-recursive function such that KPl proves that f is total and
uniformly Σ-definable in any admissible set. Then, there is some n < ω such that

V ⊨ ∀x(f (x) ∈ Ĝn(x)).

Proof.

KPl ⊢ Ad(u) → [∀x ∈ u∃!y ∈ u Af (x , y)
u]. Fix X and let θ be the set-theoretic

rank of X .

By the Embedding Theorem, we have

H0 Ωω+m

Ωω·ωm

Ad(LΩ0(X )) → ∀x ∈ LΩ0(X )∃!y ∈ LΩ0(X )Af (x , y)
LΩ0

(X ).

H0 Ωω+m

Ωω·ωm

¬Ad(LΩ0(X )) ∨ ∀x ∈ LΩ0(X )∃!y ∈ LΩ0(X )Af (x , y)
LΩ0

(X ).

H0 Ωω+m

Ωω·ωm

¬Ad(LΩ0(X )),∀x ∈ LΩ0(X )∃!y ∈ LΩ0(X )Af (x , y)
LΩ0

(X ).
On the other hand, we also have
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H0 Ωω+m

Ωω·ωm

Ad(LΩ0(X )).
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Theorem (Main Theorem)

Let f be a set-recursive function such that KPl proves that f is total and
uniformly Σ-definable in any admissible set. Then, there is some n < ω such that

V ⊨ ∀x(f (x) ∈ Ĝn(x)).

Proof.

By an application of the (Cut) rule, we get

H0 Ωω+m

Ωω·ωm

∀x ∈ LΩ0(X )∃!y ∈ LΩ0(X )Af (x , y)
LΩ0

(X ).

By Inversion,

H0 Ωω+m

Ωω·ωm

∃y ∈ LΩ0(X )Af (X , y)
LΩ0

(X ).
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Theorem (Main Theorem)

Let f be a set-recursive function such that KPl proves that f is total and
uniformly Σ-definable in any admissible set. Then, there is some n < ω such that

V ⊨ ∀x(f (x) ∈ Ĝn(x)).

Proof.

By an application of the (Cut) rule, we get

H0 Ωω+m

Ωω·ωm

∀x ∈ LΩ0(X )∃!y ∈ LΩ0(X )Af (x , y)
LΩ0

(X ).

By Predicative Cut Elimination,

H0 Ωω+1

em+1 ∃y ∈ LΩ0(X )Af (X , y)
LΩ0

(X ).
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Theorem (Main Theorem)

Let f be a set-recursive function such that KPl proves that f is total and
uniformly Σ-definable in any admissible set. Then, there is some n < ω such that

V ⊨ ∀x(f (x) ∈ Ĝn(x)).

Proof.

By an application of the (Cut) rule, we get

H0 Ωω+m

Ωω·ωm

∀x ∈ LΩ0(X )∃!y ∈ LΩ0(X )Af (x , y)
LΩ0

(X ).

By the Collapsing Theorem,

Hem+2 ψ0(em+2)

ψ0(em+2) ∃y ∈ LΩ0(X )Af (X , y)
LΩ0

(X ).
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Theorem (Main Theorem)

Let f be a set-recursive function such that KPl proves that f is total and
uniformly Σ-definable in any admissible set. Then, there is some n < ω such that

V ⊨ ∀x(f (x) ∈ Ĝn(x)).

Proof.

By an application of the (Cut) rule, we get

H0 Ωω+m

Ωω·ωm

∀x ∈ LΩ0(X )∃!y ∈ LΩ0(X )Af (x , y)
LΩ0

(X ).

By Predicative Cut Elimination, taking α = φ(ψ0(em+2))(ψ0(em+2)),

Hem+2 0
α ∃y ∈ LΩ0(X )Af (X , y)

LΩ0
(X ).

Anton Fernández Dejean Total set functions of KPl 28 / 30



Theorem (Main Theorem)

Let f be a set-recursive function such that KPl proves that f is total and
uniformly Σ-definable in any admissible set. Then, there is some n < ω such that

V ⊨ ∀x(f (x) ∈ Ĝn(x)).

Proof.

By an application of the (Cut) rule, we get

H0 Ωω+m

Ωω·ωm

∀x ∈ LΩ0(X )∃!y ∈ LΩ0(X )Af (x , y)
LΩ0

(X ).

By Boundedness,

Hem+2 0
α ∃y ∈ Lα(X )Af (X , y)

Lα(X ).

It follows that Lα(X ) ⊨ ∃y Af (X , y).
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Theorem (Main Theorem)

Let f be a set-recursive function such that KPl proves that f is total and
uniformly Σ-definable in any admissible set. Then, there is some n < ω such that

V ⊨ ∀x(f (x) ∈ Ĝn(x)).

Proof.

We have f (X ) ∈ Lα(X ), where α = φ(ψ0(em+2))(ψ0(em+2)). But we have
em+2 ∈ B0(em+3). Therefore, ψ0(em+2) < ψ0(em+3) and so α < ψ0(em+3).

Hence,

f (X ) ∈ Lα(X ) ⊆ Lψ0(em+3) = Ĝm+3(X ).
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