A classification of the set-theoretic total recursive functions of KPI Wormshop 2024

Anton Fernández Dejean Juan Pablo Aguilera Joost J. Joosten

04 August, 2024

- KP and KPI
- 2 The Main Theorem
- The Ordinal Notation System
- The system $RS_I(X)$
- The embedding Theorem
- O The proof of the Main Theorem

KP and KPI

Axioms of KP in the language $\mathcal{L} = \{ \in, \notin \}$:

- **1** Logical Axioms: Γ , A, $\neg A$ for any formula A,
- **2** Leibniz Principle: Γ , $a = b \land B(a) \rightarrow B(b)$ for any formula B,
- **3** Pair: Γ , $\exists z (a \in z \land b \in z)$,
- Union: Γ , $\exists z \forall y \in a \forall x \in y (x \in z)$,
- Δ_0 -Separation:

 $\Gamma, \exists y [\forall x \in y (x \in a \land B(x)) \land \forall x \in a(B(x) \to x \in y)],$

for any Δ_0 -formula *B*.

- O Class Induction: Γ, ∀x[∀y ∈ xB(y) → B(x)] → ∀x B(x) for any formula B,

Axioms of KPI in the language $\mathcal{L}' = \{ \in, \notin, Ad, \neg Ad \}$:

- Logical Axioms,
- 2 Leibniz Principle,
- Pair,
- Onion,
- **5** Δ_0 -Separation,
- Olass Induction,
- Infinity,
- **③** Ad1: Γ, $\forall x [Ad(x) \rightarrow \omega \in x \land Tran(x)]$,
- $@ Ad3: \ \mathsf{\Gamma}, \forall x [Ad(x) \rightarrow (Pair)^{x} \land (Union)^{x} \land (\Delta_{0} Sep)^{x} \land (\Delta_{0} Coll)^{x}],$
- **1** Lim: Γ , $\forall x \exists y [Ad(y) \land x \in y]$.

э

イロト イヨト イヨト ・

The rules of inference are the following.

$$(\wedge) \ \frac{\Gamma, A \qquad \Gamma, B}{\Gamma, A \land B}$$
$$(\vee) \ \frac{\Gamma, A}{\Gamma, A \lor B} \qquad (\vee) \ \frac{\Gamma, B}{\Gamma, A \lor B}$$
$$(b\exists) \ \frac{\Gamma, a \in b \land B(a)}{\Gamma, \exists x \in b \ B(x)} \qquad (\exists) \ \frac{\Gamma, B(a)}{\Gamma, \exists x \ B(x)}$$
$$(b\forall) \ \frac{\Gamma, a \in b \to B(a)}{\Gamma, \forall x \in b \ B(x)} \qquad (\forall) \ \frac{\Gamma, B(a)}{\Gamma, \forall x \ B(x)}$$
$$(Cut) \ \frac{\Gamma, A \qquad \Gamma, \neg A}{\Gamma}$$

3

イロト イヨト イヨト イヨト

The Main Theorem

Definition

Let X be any set. We define for every ordinal α the set $L_{\alpha}(X)$ as:

$$\begin{array}{l} \mathcal{L}_0(X) = \mathcal{T}C(\{X\}), \\ \mathcal{L}_{\alpha+1}(X) = \{Y \subseteq \mathcal{L}_{\alpha}(X) : Y \text{ is definable over } \langle \mathcal{L}_{\alpha}(X), \in \rangle \}, \\ \mathcal{L}_{\gamma}(X) = \bigcup_{\alpha < \gamma} \mathcal{L}_{\alpha}(X) \text{ if } \gamma \text{ is a limit.} \end{array}$$

∃ >

The Main Theorem

Definition

Let X be any set. We define for every ordinal α the set $L_{\alpha}(X)$ as:

$$\begin{array}{l} \mathcal{L}_0(X) = \mathcal{T}C(\{X\}), \\ \mathcal{L}_{\alpha+1}(X) = \{Y \subseteq \mathcal{L}_{\alpha}(X) : Y \text{ is definable over } \langle \mathcal{L}_{\alpha}(X), \in \rangle \} \\ \mathcal{L}_{\gamma}(X) = \bigcup_{\alpha < \gamma} \mathcal{L}_{\alpha}(X) \text{ if } \gamma \text{ is a limit.} \end{array}$$

Theorem (Main Theorem)

Let f be a set-recursive function such that KPI proves that f is total and uniformly Σ -definable in any admissible set. Then, there is some natural number n such that

$$V \vDash \forall x(f(x) \in \hat{G}_n(x)).$$

The premises of the theorem say:

$$\mathsf{KPI} \vdash \mathsf{Ad}(u) \rightarrow [\forall x \in u \exists ! y \in u \ \mathsf{A}_f(x, y)^u].$$

The proof of the main theorem relies on the (relativized) ordinal analysis of KPI. The ordinal analysis of a theory T assigns to T the ordinal α , the proof-theoretic ordinal of T: α is the supremum of the ordinals β such that T proves transfinite induction up to β . The proof of the main theorem relies on the (relativized) ordinal analysis of KPI. The ordinal analysis of a theory T assigns to T the ordinal α , the proof-theoretic ordinal of T: α is the supremum of the ordinals β such that T proves transfinite induction up to β .

The set X is a fixed set. The set-theoretic rank of X is θ . The sequence $\langle \Omega_n : n \leq \omega \rangle$ enumerates the first " ω + 1-many" uncountable regular cardinals κ such that $\kappa > \theta$.

Each $L_{\Omega_n}(X)$ is admissible.

The proof of the main theorem relies on the (relativized) ordinal analysis of KPI. The ordinal analysis of a theory T assigns to T the ordinal α , the proof-theoretic ordinal of T: α is the supremum of the ordinals β such that T proves transfinite induction up to β .

The set X is a fixed set. The set-theoretic rank of X is θ . The sequence $\langle \Omega_n : n \leq \omega \rangle$ enumerates the first " ω + 1-many" uncountable regular cardinals κ such that $\kappa > \theta$.

Each $L_{\Omega_n}(X)$ is admissible.

 $0, (1, 2, \dots, \omega, \omega + 1, \dots), \Gamma_0, \Gamma_1, \Gamma_2, \dots, \Gamma_{\theta}, (\Gamma_{\theta+1}, \dots), \Omega_0, \Omega_1, \dots, \Omega_{\omega}.$

For each β , we have $\delta, \zeta < \Gamma_{\beta} \rightarrow \varphi_{\delta}(\zeta) < \Gamma_{\beta}$.

イロン イヨン イヨン

For every α , for every $n < \omega$, we define $B_n(\alpha)$ by induction on n.

B₀(α) is the closure of {0} ∪ {Γ_β : β ≤ θ} ∪ {Ω_m : m ≤ ω} under +, φ.(·) and ψ_k ↾ α for every k < ω.

3 1 4 3 1

For every α , for every $n < \omega$, we define $B_n(\alpha)$ by induction on n.

- $B_0(\alpha)$ is the closure of $\{0\} \cup \{\Gamma_\beta : \beta \le \theta\} \cup \{\Omega_m : m \le \omega\}$ under $+, \varphi.(\cdot)$ and $\psi_k \upharpoonright \alpha$ for every $k < \omega$.
- $B_{n+1}(\alpha)$ is the closure of $\Omega_n \cup \{\Omega_m : m \leq \omega\}$ under $+, \varphi_{\cdot}(\cdot)$ and $\psi_k \upharpoonright \alpha$ for every $k < \omega$.

For every α , for every $n < \omega$, we define $B_n(\alpha)$ by induction on n.

- $B_0(\alpha)$ is the closure of $\{0\} \cup \{\Gamma_\beta : \beta \le \theta\} \cup \{\Omega_m : m \le \omega\}$ under $+, \varphi_{\cdot}(\cdot)$ and $\psi_k \upharpoonright \alpha$ for every $k < \omega$.
- $B_{n+1}(\alpha)$ is the closure of $\Omega_n \cup \{\Omega_m : m \leq \omega\}$ under $+, \varphi_{\cdot}(\cdot)$ and $\psi_k \upharpoonright \alpha$ for every $k < \omega$.

The ordinal collapsing function ψ_n is defined as $\psi_n(\alpha) = \min\{\beta : \beta \notin B_n(\alpha)\}$.

Lemma

For every ordinal α and every natural number n, we have:

- **1** $\psi_n(\alpha)$ is a strongly critical ordinal,
- **2** $\Gamma_{\theta+1} \leq \psi_0(\alpha) < \Omega_0$ and $\Omega_n < \psi_{n+1}(\alpha) < \Omega_{n+1}$.

э

< 2> < 2> -

< A[™]

Lemma

For every ordinal α and every natural number n, we have:

- **1** $\psi_n(\alpha)$ is a strongly critical ordinal,
- **2** $\Gamma_{\theta+1} \leq \psi_0(\alpha) < \Omega_0$ and $\Omega_n < \psi_{n+1}(\alpha) < \Omega_{n+1}$.

A picture of $B_n(\alpha)$:

$$0, 1, \dots, \omega, \omega + 1, \dots, \Omega_n, \Omega_n + 1, \dots, \psi_{n+1}(\alpha), \psi_{n+1}(\alpha) + 1, \dots, \\\Omega_{n+1}, \dots, \Omega_{n+2}, \dots, \Omega_{\omega}, \dots, \dots$$

э

ヨト くヨトー

Let α be an ordinal. We define the normal form of α as follows.

- $\alpha =_{NF} \alpha_1 + \cdots + \alpha_n$ iff $\alpha = \alpha_1 + \cdots + \alpha_n$, n > 1, where the ordinals $\alpha_1, \ldots, \alpha_n$ are written in normal form and are additive principal and $\alpha_1 \ge \cdots \ge \alpha_n$,
- 3 $\alpha =_{NF} \psi_n(\alpha_1)$ iff $\alpha = \psi_n(\alpha_1)$ with $\alpha_1 \in B_n(\alpha_1)$ and α_1 is written in normal form.

э

- 4 同 ト 4 ヨ ト - 4 ヨ ト -

We define $T(\theta)$ as the set of strings in the language $\{0, +, \varphi\} \cup \{\Gamma_{\beta} : \beta < \theta\} \cup \{\Omega_n : n \le \omega\} \cup \{\psi_n : n < \omega\}$ corresponding to ordinals written in normal form from the closure of $\{0\} \cup \{\Gamma_{\beta} : \beta < \theta\} \cup \{\Omega_n : n \le \omega\}$ under $+, \varphi, \psi_n$ for $n < \omega$.

Theorem

The set $T(\theta)$ and the order \prec on $T(\theta)$ induced by the ordering of ordinals are primitive recursive in θ .

From now on, we consider that all the ordinals belong to $T(\theta)$.

The set \mathcal{T} of RS₁(X)-terms is defined as follows. Each term has an ordinal level.

- $\overline{u} \in \mathcal{T}$ for every $u \in TC(\{X\})$ and $|\overline{u}| = \Gamma_{\operatorname{rank}(u)}$.
- $\mathbb{L}_{\alpha}(X) \in \mathcal{T}$ for every $\alpha \leq \Omega_{\omega}$ and $|\mathbb{L}_{\alpha}(X)| = \Gamma_{\theta+1} + \alpha$.
- $[x \in \mathbb{L}_{\alpha}(X) : B(x, s_1, \dots, s_n)^{\mathbb{L}_{\alpha}(X)}] \in \mathcal{T}$ for every $\alpha < \Omega_{\omega}$, for every KPI-formula $B(x, y_1, \dots, y_n)$ and every $s_1, \dots, s_n \in \mathcal{T}$ with $|s_1|, \dots, |s_n| < \Gamma_{\theta+1} + \alpha$. Moreover, $|[x \in \mathbb{L}_{\alpha}(X) : B(x, s_1, \dots, s_n)^{\mathbb{L}_{\alpha}(X)}]| = \Gamma_{\theta+1} + \alpha$.

In particular, we have $|\mathbb{L}_{\Omega_n}(X)| = \Omega_n$ for every $n \leq \Omega_\omega$.

イロト イヨト イヨト -

The RS₁(X)-formulas are exactly the KPI-formulas replacing free variables by RS₁(X)-terms and restricting all unbounded quantifiers to RS₁(X)-terms. The RS₁(X)-formulas of the form $\overline{u} \in \overline{v}$ or $\overline{u} \notin \overline{v}$ are called basic.

We will say that a formula $A(s_1, \ldots, s_n)^{\mathbb{L}_{\Omega_n}(X)}$ is Σ^{Ω_n} iff $A(x_1, \ldots, x_n)$ is a KPI Σ -formula and $|s_1|, \ldots, |s_n| < \Omega_n$.

The RS₁(X)-formulas are exactly the KPI-formulas replacing free variables by RS₁(X)-terms and restricting all unbounded quantifiers to RS₁(X)-terms. The RS₁(X)-formulas of the form $\overline{u} \in \overline{v}$ or $\overline{u} \notin \overline{v}$ are called basic.

We will say that a formula $A(s_1, \ldots, s_n)^{\mathbb{L}_{\Omega_n}(X)}$ is Σ^{Ω_n} iff $A(x_1, \ldots, x_n)$ is a KPI Σ -formula and $|s_1|, \ldots, |s_n| < \Omega_n$.

For example, from the KPI-formula $\forall x \in y \exists z (x \in z)$ we get the Σ^{Ω_1} -formula $\forall x \in \mathbb{L}_{\Omega_0}(X) \exists z \in \mathbb{L}_{\Omega_1}(X) (x \in z)$.

We will use the following abbreviations.

Definition

- $s = t \text{ will stand for } \forall x \in s(x \in t) \land \forall x \in t(x \in s).$
- ② ¬A is obtained from A by replacing ∈ by ∉ and vice-versa, ∨ by ∧ and vice-versa, ∀ by ∃ and vice-versa and Ad(·) by ¬Ad(·) and vice-versa.

3
$$A \to B$$
 will stand for $\neg A \lor B$.

() Let s and t be terms such that |s| < |t|. For $\circ \in \{\land, \rightarrow\}$, we define

$$s \stackrel{\cdot}{\in} t \circ A(s,t) = \begin{cases} \overline{u} \in \overline{v} \circ A(\overline{u}, \overline{v}) & \text{if } s \in t \equiv \overline{u} \in \overline{v}, \\ A(s,t) & \text{if } t = \mathbb{L}_{\alpha}(X), \\ B(s) \circ A(s,t) & \text{if } t = [x \in \mathbb{L}_{\alpha}(X) : B(x)]. \end{cases}$$

An operator is a function $\mathcal{H} : \mathcal{P}(ON) \to \mathcal{P}(ON)$ such that for every $Y, Y' \in \mathcal{P}(ON)$ the following conditions are satisfied.

- $\ 0 \ \ \{0\} \cup \{\Gamma_{\beta} : \beta \leq \theta + 1\} \cup \{\Omega_{i} : i \leq \omega\} \subseteq \mathcal{H}(Y).$
- 2 Let $\alpha =_{NF} \alpha_1 + \cdots + \alpha_n$. Then, $\alpha \in \mathcal{H}(Y)$ iff $\alpha_1, \ldots, \alpha_n \in \mathcal{H}(Y)$.
- **3** Let $\alpha =_{NF} \varphi \alpha_1 \alpha_2$. Then, $\alpha \in \mathcal{H}(Y)$ iff $\alpha_1, \alpha_2 \in \mathcal{H}(Y)$.
- $Y \subseteq \mathcal{H}(Y).$
- **()** If $Y \subseteq \mathcal{H}(Y')$ then $\mathcal{H}(Y) \subseteq \mathcal{H}(Y')$.

Moreover, \mathcal{H} will often denote $\mathcal{H}(\emptyset)$.

Let \mathcal{H} be an operator and let Γ be a set of formulas. We have that Γ is derived by an \mathcal{H} -controlled derivation with ordinal α whenever $\{\alpha\} \cup k(\Gamma) \subseteq \mathcal{H}$ and one of the following axioms or rules can be applied.

Axioms:

$$\mathcal{H} \stackrel{|\!\!\!\!|}{\longrightarrow} \Gamma, \overline{u} \in \overline{v} \text{ for any } u, v \in TC(\{X\}) \text{ such that } u \in v,$$
$$\mathcal{H} \stackrel{|\!\!\!|}{\longrightarrow} \Gamma, \overline{u} \notin \overline{v} \text{ for any } u, v \in TC(\{X\}) \text{ such that } u \notin v.$$

э

Rules:

$$(\wedge) \quad \frac{\mathcal{H} \stackrel{|\alpha_{0}}{=} \Gamma, A \wedge B, A \qquad \mathcal{H} \stackrel{|\alpha_{1}}{=} \Gamma, A \wedge B, B}{\mathcal{H} \stackrel{|\alpha}{=} \Gamma, A \wedge B} \qquad \qquad \alpha_{0}, \alpha_{1} < \alpha$$

$$(\vee) \ \frac{\mathcal{H} |^{\underline{\alpha}_{0}} \Gamma, A \vee B, A}{\mathcal{H} |^{\underline{\alpha}} \Gamma, A \vee B} \qquad \qquad \alpha_{0} < \alpha$$

$$(\vee) \quad \frac{\mathcal{H} \stackrel{|\alpha_0}{=} \Gamma, A \lor B, B}{\mathcal{H} \stackrel{|\alpha}{=} \Gamma, A \lor B} \qquad \qquad \alpha_0 < \alpha$$

Anton Fernández Dejean

æ

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

$$(\in) \begin{array}{c} \mathcal{H} \stackrel{|\alpha_0}{\longrightarrow} \Gamma, r \in t, s \stackrel{.}{\leftarrow} t \wedge r = s \\ \mathcal{H} \stackrel{|\alpha}{\longrightarrow} \Gamma, r \in t \end{array} \qquad \begin{array}{c} \alpha_0 < \alpha, \\ |s| < |t|, \\ |s| < \Gamma_{\theta+1} + \alpha, \\ r \in t \text{ not basic.} \end{array}$$

$$(\notin) \quad \frac{\mathcal{H}[s] \stackrel{|\alpha_s}{\vdash} \Gamma, r \notin t, s \stackrel{.}{\in} t \to r \neq s \text{ for all } |s| < |t|}{\mathcal{H} \stackrel{|\alpha}{\vdash} \Gamma, r \notin t} \qquad \qquad \alpha_s < \alpha, \\ r \in t \text{ not basic.}$$

Anton Fernández Dejean

18 / 30

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - の々で

$$(b\forall) \ \frac{\mathcal{H}[s] \stackrel{|\alpha_s|}{=} \Gamma, \forall x \in t \ B(x), s \in t \to B(s) \text{ for all } |s| < |t|}{\mathcal{H} \stackrel{|\alpha|}{=} \Gamma, \forall x \in t \ B(x)} \qquad \qquad \alpha_s < \alpha$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - の々で

$$(Ad) \begin{array}{l} \mathcal{H} \stackrel{\alpha_0}{\stackrel{-}{\longrightarrow}} \Gamma, Ad(t), t = \mathbb{L}_{\Omega_n}(X) \\ \mathcal{H} \stackrel{\alpha}{\stackrel{-}{\longrightarrow}} \Gamma, Ad(t) \end{array} \qquad \qquad \begin{array}{l} \alpha_0 < \alpha, \\ n \leq \omega, \\ \Omega_n < |t|. \end{array}$$

$$(\neg Ad) \ \frac{\mathcal{H} | \stackrel{\alpha_n}{=} \Gamma, \neg Ad(t), t \neq \mathbb{L}_{\Omega_n}(X) \text{ for all } n \leq \omega}{\mathcal{H} | \stackrel{\alpha}{=} \Gamma, \neg Ad(t)} \qquad \qquad \alpha_n < \alpha$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - の々で

$$(Cut) \frac{\mathcal{H} \Big|^{\frac{\alpha_0}{\mu}} \Gamma, A \qquad \mathcal{H} \Big|^{\frac{\alpha_0}{\mu}} \Gamma, \neg A}{\mathcal{H} \Big|^{\frac{\alpha}{\mu}} \Gamma}$$

 $\alpha_0 < \alpha$

$$(\mathsf{Ref}_n) \ \frac{\mathcal{H} \Big|^{\underline{\alpha}_0} \ \Gamma, \exists z \in \mathbb{L}_{\Omega_n}(X) \ A^z, A^{\mathbb{L}_{\Omega_n}(X)}}{\mathcal{H} \Big|^{\underline{\alpha}} \ \Gamma, \exists z \in \mathbb{L}_{\Omega_n}(X) \ A^z}$$

 $\alpha_0, \Omega_n < \alpha$, A is a Σ formula.

3

We define the rank of a term or formula by recursion.

- $\operatorname{rk}(\overline{u}) = \Gamma_{\operatorname{rank}(u)}$,
- $\operatorname{rk}(\mathbb{L}_{\alpha}(X)) = \Gamma_{\theta+1} + \omega \cdot \alpha$,
- $\operatorname{rk}([x \in \mathbb{L}_{\alpha}(X) : B(x)]) = \max(\Gamma_{\theta+1} + \omega \cdot \alpha + 1, \operatorname{rk}(B(\overline{\emptyset})) + 2),$

2

く 何 ト く ヨ ト く ヨ ト

We define the rank of a term or formula by recursion.

•
$$\operatorname{rk}(\overline{u}) = \Gamma_{\operatorname{rank}(u)}$$
,

•
$$\operatorname{rk}(\mathbb{L}_{\alpha}(X)) = \Gamma_{\theta+1} + \omega \cdot \alpha$$
,

•
$$\operatorname{rk}([x \in \mathbb{L}_{\alpha}(X) : B(x)]) = \max(\Gamma_{\theta+1} + \omega \cdot \alpha + 1, \operatorname{rk}(B(\overline{\emptyset})) + 2),$$

•
$$\operatorname{rk}(s \in t) = \operatorname{rk}(s \notin t) = \max(\operatorname{rk}(s) + 6, \operatorname{rk}(t) + 1),$$

•
$$\operatorname{rk}(Ad(t)) = \operatorname{rk}(\neg Ad(t)) = \operatorname{rk}(t) + 5$$
,

•
$$\operatorname{rk}(A \lor B) = \operatorname{rk}(A \land B) = \max(\operatorname{rk}(A), \operatorname{rk}(B)) + 1$$
,

•
$$\operatorname{rk}(\exists x \in t \ A(x)) = \operatorname{rk}(\forall x \in t \ A(x)) = \max(\operatorname{rk}(t), \operatorname{rk}(A(\overline{\emptyset})) + 2).$$

Lemma

Let A be a formula. Then rk(B) < rk(A) for any premise B of A.

æ

Image: A matrix

We will write $\mathcal{H} | \frac{\alpha}{\rho} \Gamma$ whenever $\mathcal{H} | \frac{\alpha}{\Gamma} \Gamma$ and all the cut formulas in the proof have rank strictly less than ρ .

Lemma (Predicative Cut Elimination)

Let $\alpha \in \mathcal{H}$. Let ρ be an ordinal such that $\Omega_n \notin [\rho, \rho + \omega^{\alpha})$ for any $n < \omega$. If $\mathcal{H} \mid_{\rho + \omega^{\alpha}}^{\beta} \Gamma$ then $\mathcal{H} \mid_{\rho}^{\varphi \alpha \beta} \Gamma$.

We will write $\mathcal{H} | \frac{\alpha}{\rho} \Gamma$ whenever $\mathcal{H} | \frac{\alpha}{\Gamma} \Gamma$ and all the cut formulas in the proof have rank strictly less than ρ .

Lemma (Predicative Cut Elimination)

Let $\alpha \in \mathcal{H}$. Let ρ be an ordinal such that $\Omega_n \notin [\rho, \rho + \omega^{\alpha})$ for any $n < \omega$. If $\mathcal{H} \mid_{\rho + \omega^{\alpha}}^{\beta} \Gamma$ then $\mathcal{H} \mid_{\rho}^{\varphi \alpha \beta} \Gamma$.

Example 1. Let $\mathcal{H} \left| \frac{\beta}{\Omega_n + \omega^{\alpha}} \Gamma \right|$ with $\Omega_n < \Omega_n + \omega^{\alpha} < \Omega_{n+1}$. Then, we get $\mathcal{H} \left| \frac{\varphi \alpha \beta}{\Omega_n + 1} \right| \Gamma$.

We will write $\mathcal{H} | \frac{\alpha}{\rho} \Gamma$ whenever $\mathcal{H} | \frac{\alpha}{\Gamma} \Gamma$ and all the cut formulas in the proof have rank strictly less than ρ .

Lemma (Predicative Cut Elimination)

Let $\alpha \in \mathcal{H}$. Let ρ be an ordinal such that $\Omega_n \notin [\rho, \rho + \omega^{\alpha})$ for any $n < \omega$. If $\mathcal{H} \mid_{\rho + \omega^{\alpha}}^{\beta} \Gamma$ then $\mathcal{H} \mid_{\rho}^{\varphi \alpha \beta} \Gamma$.

Example 1. Let $\mathcal{H} \left| \frac{\beta}{\Omega_n + \omega^{\alpha}} \right| \Gamma$ with $\Omega_n < \Omega_n + \omega^{\alpha} < \Omega_{n+1}$. Then, we get $\mathcal{H} \left| \frac{\varphi \alpha \beta}{\Omega_n + 1} \right| \Gamma$.

Example 2. Let $\mathcal{H} \Big|_{\omega^{\alpha}}^{\beta} \Gamma$ with $\alpha < \Omega_0$. Then, we get $\mathcal{H} \Big|_{0}^{\varphi \alpha \beta} \Gamma$.

(本間) (本語) (本語) (二語

For any set of ordinal Y we let

$$\mathcal{H}_{eta}(Y) = \bigcap \{B_n(lpha): Y \subseteq B_n(lpha) ext{ with } eta < lpha ext{ and } n < \omega \}.$$

We recall that $A^{\mathbb{L}_{\Omega_m}(X)}$ is Σ^{Ω_m} iff A is a KPI Σ -formula and the terms replacing free variables have level less than Ω_m .

Theorem (Collapsing Theorem)

Let $n \leq \omega$ and let $m < \omega$. Let Γ be a set of Σ^{Ω_m} -formulas and let α and β be ordinals with $\beta \in \mathcal{H}_{\beta}$.

If $\mathcal{H}_{\beta} \Big|_{\Omega_{n}+1}^{\alpha} \Gamma$ then $\mathcal{H}_{\beta+\omega^{\Omega_{n}+1+\alpha}} \Big|_{\psi_{m}(\beta+\omega^{\Omega_{n}+1+\alpha})}^{\psi_{m}(\beta+\omega^{\Omega_{n}+1+\alpha})} \Gamma$.

Lemma

Let \mathcal{H} be any operator. For every axiom Ax of KPI, we have $\mathcal{H} \stackrel{|\alpha}{|_{\rho}} (Ax)^{\mathbb{L}_{\Omega_{\omega}}(X)}$ where $\rho \leq \Omega_{\omega}$ and $\alpha \leq \Omega_{\omega} \cdot \omega^{2}$.

Each rule of KPI can be embedded in $RS_I(X)$. The application of an embedded KPI rule increases the cut-complexity of the derivation by a finite number.

Lemma

Let \mathcal{H} be any operator. For every axiom Ax of KPI, we have $\mathcal{H} \left| \frac{\alpha}{\rho} (Ax)^{\mathbb{L}_{\Omega_{\omega}}(X)} \right|$ where $\rho \leq \Omega_{\omega}$ and $\alpha \leq \Omega_{\omega} \cdot \omega^2$.

Each rule of KPI can be embedded in $RS_I(X)$. The application of an embedded KPI rule increases the cut-complexity of the derivation by a finite number.

Theorem (Embedding)

Let $\Gamma(a_1, \ldots, a_n)$ be a finite set of formulas with all the free variables displayed such that KPI $\vdash \Gamma(a_1, \ldots, a_n)$. Then, there is some $m < \omega$ such that for any operator \mathcal{H} and any terms s_1, \ldots, s_n controlled by \mathcal{H} we have

$$\mathcal{H} \frac{|\Omega_{\omega} \cdot \omega^m|}{|\Omega_{\omega} + m|} \Gamma(s_1, \ldots, s_n)^{\mathbb{L}_{\Omega_{\omega}}(X)}.$$

イロト イヨト イヨト ・

Definition

We define the ordinal e_n by recursion on n as follows:

- $e_0=\Omega_\omega+1$,
- $e_{n+1} = \omega^{e_n}$.

э

- E > - E >

Definition

We define the ordinal e_n by recursion on n as follows:

- $e_0 = \Omega_\omega + 1$,
- $e_{n+1} = \omega^{e_n}$.

Now, we define for each $n < \omega$ the set $\hat{G}_n(x) = L_{\psi_0(e_{n+3})}(x)$.

э

- E - - E -

Definition

We define the ordinal e_n by recursion on n as follows:

- $e_0 = \Omega_\omega + 1$,
- $e_{n+1} = \omega^{e_n}$.

Now, we define for each $n < \omega$ the set $\hat{G}_n(x) = L_{\psi_0(e_{n+3})}(x)$.

Lemma

For every natural number n we have $e_n \in B_0(e_{n+1})$.

э

Let f be a set-recursive function such that KPI proves that f is total and uniformly Σ -definable in any admissible set. Then, there is some $n < \omega$ such that

$$V \vDash \forall x(f(x) \in \hat{G}_n(x)).$$

Proof.

 $\mathsf{KPI} \vdash \mathsf{Ad}(u) \rightarrow [\forall x \in u \exists ! y \in u \ \mathsf{A}_f(x, y)^u].$ Fix X and let θ be the set-theoretic rank of X.

Let f be a set-recursive function such that KPI proves that f is total and uniformly Σ -definable in any admissible set. Then, there is some $n < \omega$ such that

 $V \vDash \forall x(f(x) \in \hat{G}_n(x)).$

Proof.

$$\begin{split} \mathsf{KPI} &\vdash Ad(u) \to [\forall x \in u \exists ! y \in u \; A_f(x, y)^u]. \; \mathsf{Fix} \; X \; \mathsf{and} \; \mathsf{let} \; \theta \; \mathsf{be} \; \mathsf{the} \; \mathsf{set}\text{-theoretic} \\ \mathsf{rank} \; \mathsf{of} \; X. \; \mathsf{By} \; \mathsf{the} \; \mathsf{Embedding} \; \mathsf{Theorem}, \; \mathsf{we} \; \mathsf{have} \\ \mathcal{H}_0 \left| \frac{\Omega_{\omega^{\cdot} \omega^m}}{\Omega_{\omega^{+} m}} \; Ad(\mathbb{L}_{\Omega_0}(X)) \to \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}. \end{split}$$

Let f be a set-recursive function such that KPI proves that f is total and uniformly Σ -definable in any admissible set. Then, there is some $n < \omega$ such that

$$V \vDash \forall x(f(x) \in \hat{G}_n(x)).$$

Proof.

$$\begin{split} \mathsf{KPI} &\vdash Ad(u) \to [\forall x \in u \exists ! y \in u \ A_f(x, y)^u]. \ \mathsf{Fix} \ X \ \mathsf{and} \ \mathsf{let} \ \theta \ \mathsf{be} \ \mathsf{the} \ \mathsf{set-theoretic} \\ \mathsf{rank} \ \mathsf{of} \ X. \ \mathsf{By} \ \mathsf{the} \ \mathsf{Embedding} \ \mathsf{Theorem}, \ \mathsf{we} \ \mathsf{have} \\ \mathcal{H}_0 \left| \frac{|\Omega_{\omega} \cdot \omega^m}{\Omega_{\omega} + m} \ Ad(\mathbb{L}_{\Omega_0}(X)) \to \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}. \\ \mathcal{H}_0 \left| \frac{|\Omega_{\omega} \cdot \omega^m}{\Omega_{\omega} + m} \ \neg Ad(\mathbb{L}_{\Omega_0}(X)) \lor \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}. \end{split}$$

3

Let f be a set-recursive function such that KPI proves that f is total and uniformly Σ -definable in any admissible set. Then, there is some $n < \omega$ such that

$$V \vDash \forall x(f(x) \in \hat{G}_n(x)).$$

Proof.

$$\begin{split} \mathsf{KPI} &\vdash \mathcal{A}d(u) \to [\forall x \in u \exists ! y \in u \ \mathcal{A}_f(x, y)^u]. \ \mathsf{Fix} \ X \ \mathsf{and} \ \mathsf{let} \ \theta \ \mathsf{be} \ \mathsf{the} \ \mathsf{set} \ \mathsf{theoretic} \\ \mathsf{rank} \ \mathsf{of} \ X. \ \mathsf{By} \ \mathsf{the} \ \mathsf{Embedding} \ \mathsf{Theorem}, \ \mathsf{we} \ \mathsf{have} \\ \mathcal{H}_0 \left| \frac{\Omega_{\omega^* \omega^m}}{\Omega_{\omega^+ m}} \ \mathcal{A}d(\mathbb{L}_{\Omega_0}(X)) \to \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) \mathcal{A}_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}. \\ \mathcal{H}_0 \left| \frac{\Omega_{\omega^* \omega^m}}{\Omega_{\omega^+ m}} \ \neg \mathcal{A}d(\mathbb{L}_{\Omega_0}(X)) \lor \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) \mathcal{A}_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}. \\ \mathcal{H}_0 \left| \frac{\Omega_{\omega^* \omega^m}}{\Omega_{\omega^+ m}} \ \neg \mathcal{A}d(\mathbb{L}_{\Omega_0}(X)), \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) \mathcal{A}_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}. \end{split}$$

(人間) トイヨト イヨト ニヨ

Let f be a set-recursive function such that KPI proves that f is total and uniformly Σ -definable in any admissible set. Then, there is some $n < \omega$ such that

 $V \vDash \forall x(f(x) \in \hat{G}_n(x)).$

Proof.

$$\begin{split} & \mathsf{KPI} \vdash Ad(u) \to [\forall x \in u \exists ! y \in u \ A_f(x, y)^u]. \ \mathsf{Fix} \ X \ \mathsf{and} \ \mathsf{let} \ \theta \ \mathsf{be} \ \mathsf{the} \ \mathsf{set-theoretic} \\ & \mathsf{rank} \ \mathsf{of} \ X. \ \mathsf{By} \ \mathsf{the} \ \mathsf{Embedding} \ \mathsf{Theorem}, \ \mathsf{we} \ \mathsf{have} \\ & \mathcal{H}_0 \left| \frac{\Omega_{\omega^* \omega^m}}{\Omega_{\omega^+ m}} \ Ad(\mathbb{L}_{\Omega_0}(X)) \to \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}. \\ & \mathcal{H}_0 \left| \frac{\Omega_{\omega^* \omega^m}}{\Omega_{\omega^+ m}} \ \neg Ad(\mathbb{L}_{\Omega_0}(X)) \lor \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}. \\ & \mathcal{H}_0 \left| \frac{\Omega_{\omega^* \omega^m}}{\Omega_{\omega^+ m}} \ \neg Ad(\mathbb{L}_{\Omega_0}(X)), \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}. \\ & \mathsf{On} \ \mathsf{the} \ \mathsf{other} \ \mathsf{hand}, \ \mathsf{we} \ \mathsf{also} \ \mathsf{have} \\ & \mathcal{H}_0 \left| \frac{\Omega_{\omega^* \omega^m}}{\Omega_{\omega^+ m}} \ Ad(\mathbb{L}_{\Omega_0}(X)). \end{matrix} \right| \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ― 臣 – ∽��?

Let f be a set-recursive function such that KPI proves that f is total and uniformly Σ -definable in any admissible set. Then, there is some $n < \omega$ such that

 $V \vDash \forall x(f(x) \in \hat{G}_n(x)).$

Proof.

$$\begin{split} & \mathsf{KPI} \vdash Ad(u) \to [\forall x \in u \exists ! y \in u \ A_f(x, y)^u]. \ \text{Fix } X \text{ and let } \theta \text{ be the set-theoretic} \\ & \mathsf{rank of } X. \ \text{By the Embedding Theorem, we have} \\ & \mathcal{H}_0 \left| \frac{\Omega_{\omega} \cdot \omega^m}{\Omega_{\omega} + m} \ Ad(\mathbb{L}_{\Omega_0}(X)) \to \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}. \\ & \mathcal{H}_0 \left| \frac{\Omega_{\omega} \cdot \omega^m}{\Omega_{\omega} + m} \ \neg Ad(\mathbb{L}_{\Omega_0}(X)) \lor \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}. \\ & \mathcal{H}_0 \left| \frac{\Omega_{\omega} \cdot \omega^m}{\Omega_{\omega} + m} \ \neg Ad(\mathbb{L}_{\Omega_0}(X)), \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}. \\ & \mathsf{On the other hand, we also have} \\ & \mathcal{H}_0 \left| \frac{\Omega_{\omega} \cdot \omega^m}{\Omega_{\omega} + m} \ Ad(\mathbb{L}_{\Omega_0}(X)), \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}. \\ & \Box_{\Omega_0} = \mathbb{E}_{\Omega_0} \left| \frac{\Omega_{\omega} \cdot \omega^m}{\Omega_{\omega} + m} \ Ad(\mathbb{L}_{\Omega_0}(X)), \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}. \\ & \Box_{\Omega_0} = \mathbb{E}_{\Omega_0} \left| \frac{\Omega_{\omega} \cdot \omega^m}{\Omega_0 + m} \ Ad(\mathbb{L}_{\Omega_0}(X)), \forall x \in \mathbb{E}_{\Omega_0}(X) \exists ! y \in \mathbb{E}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}. \\ & \Box_{\Omega_0} = \mathbb{E}_{\Omega_0} \left| \frac{\Omega_{\omega} \cdot \omega^m}{\Omega_0 + m} \ Ad(\mathbb{E}_{\Omega_0}(X)), \forall x \in \mathbb{E}_{\Omega_0}(X) \exists ! y \in \mathbb{E}_{\Omega_0}(X) A_f(x, y)^{\mathbb{E}_{\Omega_0}(X)}. \\ & \Box_{\Omega_0} = \mathbb{E}_{\Omega_0} \left| \frac{\Omega_{\omega} \cdot \omega^m}{\Omega_0 + m} \ Ad(\mathbb{E}_{\Omega_0}(X)), \forall x \in \mathbb{E}_{\Omega_0} \left| \frac{\Omega_0}{\Omega_0 + m} \ \Omega_0} \right| \\ & \Box_{\Omega_0} = \mathbb{E}_{\Omega_0} \left| \frac{\Omega_0}{\Omega_0 + m} \ \Omega_0 \left| \frac{\Omega_0}{\Omega_0 + m} \ \Omega_0} \right| \\ & \Box_{\Omega_0} = \mathbb{E}_{\Omega_0} \left| \frac{\Omega_0}{\Omega_0 + m} \ \Omega_0} \right| \\ & \Box_{\Omega_0} = \mathbb{E}_{\Omega_0} \left| \frac{\Omega_0}{\Omega_0 + m} \ \Omega_0} \right| \\ & \Box_{\Omega_0} = \mathbb{E}_{\Omega_0} \left| \frac{\Omega_0}{\Omega_0 + m} \ \Omega_0} \right| \\ & \Box_{\Omega_0} = \mathbb{E}_{\Omega_0} \left| \frac{\Omega_0}{\Omega_0 + m} \ \Omega_0} \right| \\ & \Box_{\Omega_0} = \mathbb{E}_{\Omega_0} \left| \frac{\Omega_0}{\Omega_0 + m} \ \Omega_0} \right| \\ & \Box_{\Omega_0} = \mathbb{E}_{\Omega_0} \left| \frac{\Omega_0}{\Omega_0 + m} \ \Omega_0} \right| \\ & \Box_{\Omega_0} = \mathbb{E}_{\Omega_0} \left| \frac{\Omega_0}{\Omega_0 + m} \ \Omega_0} \right| \\ & \Box_{\Omega_0} = \mathbb{E}_{\Omega_0} \left| \frac{\Omega_0}{\Omega_0} \right| \\ & \Box_{\Omega$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ― 臣 – ∽��?

Let f be a set-recursive function such that KPI proves that f is total and uniformly Σ -definable in any admissible set. Then, there is some $n < \omega$ such that

$$V \vDash \forall x(f(x) \in \hat{G}_n(x)).$$

Proof.

By an application of the (*Cut*) rule, we get
$$\mathcal{H}_0 \mid_{\substack{\Omega_\omega \cdot \omega^m \\ \Omega_\omega + m}}^{\underline{\Omega}_\omega \cdot \omega^m} \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}.$$

By Inversion,

$$\mathcal{H}_0 \left| rac{\Omega_\omega \cdot \omega^m}{\Omega_\omega + m} \, \exists y \in \mathbb{L}_{\Omega_0}(X) A_f(X,y)^{\mathbb{L}_{\Omega_0}(X)}.
ight.$$

э

Let f be a set-recursive function such that KPI proves that f is total and uniformly Σ -definable in any admissible set. Then, there is some $n < \omega$ such that

 $V \vDash \forall x(f(x) \in \hat{G}_n(x)).$

Proof.

By an application of the (*Cut*) rule, we get
$$\mathcal{H}_0 \mid_{\substack{\Omega_\omega \cdot \omega^m \\ \Omega_\omega + m}}^{\underline{\Omega}_\omega \cdot \omega^m} \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}.$$

By Predicative Cut Elimination,

$$\mathcal{H}_0 \left| rac{\mathrm{e}_{m+1}}{\Omega_\omega + 1} \right. \exists y \in \mathbb{L}_{\Omega_0}(X) \mathcal{A}_f(X,y)^{\mathbb{L}_{\Omega_0}(X)}.$$

э

Let f be a set-recursive function such that KPI proves that f is total and uniformly Σ -definable in any admissible set. Then, there is some $n < \omega$ such that

 $V \vDash \forall x(f(x) \in \hat{G}_n(x)).$

Proof.

By an application of the (*Cut*) rule, we get
$$\mathcal{H}_0 \mid_{\widehat{\Omega_\omega} + m}^{\Omega_\omega \cdot \omega^m} \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}.$$

By the Collapsing Theorem,

$$\mathcal{H}_{e_{m+2}} \left| \frac{\psi_0(e_{m+2})}{\psi_0(e_{m+2})} \right| \exists y \in \mathbb{L}_{\Omega_0}(X) \mathcal{A}_f(X, y)^{\mathbb{L}_{\Omega_0}(X)}$$

Let f be a set-recursive function such that KPI proves that f is total and uniformly Σ -definable in any admissible set. Then, there is some $n < \omega$ such that

$$V \vDash \forall x(f(x) \in \hat{G}_n(x)).$$

Proof.

By an application of the (*Cut*) rule, we get $\mathcal{H}_0 \frac{|\Omega_{\omega} \cdot \omega^m|}{\Omega_{\omega} + m} \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}.$

By Predicative Cut Elimination, taking $\alpha = \varphi(\psi_0(e_{m+2}))(\psi_0(e_{m+2}))$,

$$\mathcal{H}_{e_{m+2}} \Big|_{\overline{0}}^{\alpha} \exists y \in \mathbb{L}_{\Omega_0}(X) \mathcal{A}_f(X, y)^{\mathbb{L}_{\Omega_0}(X)}.$$

Let f be a set-recursive function such that KPI proves that f is total and uniformly Σ -definable in any admissible set. Then, there is some $n < \omega$ such that

 $V \vDash \forall x(f(x) \in \hat{G}_n(x)).$

Proof.

By an application of the (*Cut*) rule, we get
$$\mathcal{H}_0 \mid_{\widehat{\Omega_\omega} + m}^{\Omega_\omega \cdot \omega^m} \forall x \in \mathbb{L}_{\Omega_0}(X) \exists ! y \in \mathbb{L}_{\Omega_0}(X) A_f(x, y)^{\mathbb{L}_{\Omega_0}(X)}.$$

By Boundedness,

$$\mathcal{H}_{e_{m+2}} \left| \frac{lpha}{0} \exists y \in \mathbb{L}_{\alpha}(X) \mathcal{A}_{f}(X, y)^{\mathbb{L}_{\alpha}(X)} \right|$$

It follows that $L_{\alpha}(X) \vDash \exists y \ A_f(X, y)$.

æ

Let f be a set-recursive function such that KPI proves that f is total and uniformly Σ -definable in any admissible set. Then, there is some $n < \omega$ such that

 $V \vDash \forall x(f(x) \in \hat{G}_n(x)).$

Proof.

We have $f(X) \in L_{\alpha}(X)$, where $\alpha = \varphi(\psi_0(e_{m+2}))(\psi_0(e_{m+2}))$. But we have $e_{m+2} \in B_0(e_{m+3})$. Therefore, $\psi_0(e_{m+2}) < \psi_0(e_{m+3})$ and so $\alpha < \psi_0(e_{m+3})$.

Hence,

$$f(X) \in L_{\alpha}(X) \subseteq L_{\psi_0(e_{m+3})} = \hat{G}_{m+3}(X).$$

- J. Barwise. Admissible sets and structures. Springer, 1975.
- W. Buchholz. *A new system of proof-theoretic ordinal functions*. In Annals of Pure and Applied Logic volume 32, pages 195-207, 1986.
- J. Cook, M. Rathjen. *Classifying the provably total set functions of KP and KP(P)*. University of Leeds, 2016.
- W. Pohlers. *Subsystems of Set Theory and Second Order Number Theory*. In Samuel R. Buss (ed.), Handbook of proof theory, pages 137-209. Elsevier, 1998.
- W. Pohlers. *Proof Theory: The First Step into Impredicativity* (Universitext). Springer, 2009.
- M. Rathjen. *The Realm of Ordinal Analysis*. In S.B. Cooper and J.K. Truss (eds.), Sets and Proofs, pages 219-279. Cambridge University Press, 1999.
- G.E. Sacks. *Higher Recursion Theory*. Springer, 1990.
 - A. Weiermann. *How to characterize provably total functions by local predicativity*. In Journal of Symbolic Logic 61, 1996.