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Kripke semantics vs. type theory

Modal logic is important in Computer Science:

▶ temporal logic

▶ epistemic logic

▶ dynamic logic

▶ Hennessy-Milner logic

In most cases, it is given a Kripke semantics.

But in type theory proofs are important (Curry-Howard-Lambek).

Type-theoreticmodalities arise everywhere in programming:

▶ ‘logical’ time

▶ proof-irrelevance

▶ globality

▶ information flow

How can we connect these two worlds?
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I. Intuitionistic logic: Space vs. Algebra



Kripke semantics of intuitionistic logic

Let (W ,⊑) be a Kripke frame, i.e. a partial order.

Up(W ) = upper sets S ⊆ W (where w ∈ S and w ⊑ v imply v ∈ S)

Let V : Var → Up(W ) map each proposition to an upper set. Define

w ⊨ p
def≡ w ∈ V (p)

w ⊨ ⊥ def≡ never

w ⊨ φ ∧ ψ def≡ w ⊨ φ and w ⊨ ψ

w ⊨ φ ∨ ψ def≡ w ⊨ φ or w ⊨ ψ

w ⊨ φ→ ψ
def≡ ∀v. w ⊑ v and v ⊨ φ imply v ⊨ ψ

Monotonicity: w ⊨ φ and w ⊑ v imply v ⊨ φ

Theorem (Kripke)

A formula is valid (in all frames and all words) iff it is a theorem.



Algebraic semantics of intuitionistic logic

A Heyting algebra (H,≤) is a lattice (has finite meets and joins)

such that for every x, y ∈ H there exists x ⇒ y ∈ H with

c ∧ x ≤ y ⇐⇒ c ≤ x ⇒ y for all c ∈ H

Suppose that for each proposition p we have an element JpK ∈ H.
Intuitionistic logic can then be interpreted into H compositionally:

J⊥K def

= 0

Jφ ∧ ψK def

= JφK ∧ JψK

Jφ ∨ ψK def

= JφK ∨ JψK

Jφ→ ψK def

= JφK ⇒ JψK

Theorem

A formula is valid (= 1 in all algebras) iff it is a theorem.



Prime algebraic lattices: from space to algebra

Let (W ,⊑) be a Kripke frame, and 2 def

= {0 ⊑ 1}.

[W ,2] (= monotone mapsW → 2) has many curious properties:

▶ [W ,2] ∼= Up(W ) where the order is inclusion

▶ It is a complete Heyting algebra (arbitrary joins and meets)

▶ The principal upper set embedding ↑ : W op → [W ,2] given by

w 7→ {v | w ⊑ v} preserves meets and exponentials.

▶ An element is a prime (p ⊑
⊔

i di ⇒ ∃i. p ⊑ di) iff it is ↑w .
▶ Every upper set S is the join of primes below it:

S =
⊔

{P | P prime, P ⊆ S} =
⊔

{↑w | w ∈ S}

In short: [W ,2] is a prime algebraic lattice [Win09].

A duality (Raney [Ran52]; Nielsen, Plotkin, and Winskel [NPW81]):

Posop ≃ PrAlgLatt
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Categories as spaces

A category C has

▶ objects c, d, . . . ∈ C
▶ morphisms f , g, . . . : c → d between two objects

▶ a way to compose morphisms, and identity morphisms

Categories are often used as ‘mathematical universes’

(sets, graphs, vector spaces, topological spaces, . . . )

But a category can also be seen as a partial order with evidence.

x ⊑ x

x ⊑ y y ⊑ z

x ⊑ z

idx : x → x

f : x → y g : y → z

g ◦ f : x → z

A category can also be seen as a space with direction.



Two-dimensional Kripke semantics of intuitionistic logic

Take any (small) category C. Define a set

JφKw

of proofs of φ at a world w ∈ C, by induction on φ.

J⊥Kw
def

= ∅

Jφ ∧ ψKw
def

= JφKw × JψKw = {(x, y) | x ∈ JφKw , y ∈ JψKw}

Jφ ∨ ψKw
def

= JφKw + JψKw = {(1, a) | a ∈ JφKw} ∪ {(2, b) | b ∈ JψKw}

Jφ→ ψKw
def

= (v : C) → HomC(w, v) → JφKv → JψKv (not exactly)

Monotonicity: for each f : w → v and x ∈ JφKw define f · x ∈ JφKv
This defines a presheaf, i.e. a functor

JφK : C −→ Set



Kripke semantics of intuitionistic logic

Let (W ,⊑) be a Kripke frame, i.e. a partial order.

Up(W ) = upper sets S ⊆ W (where w ∈ S and w ⊑ v imply v ∈ S)

Let V : Var → Up(W ) map each proposition to an upper set. Define

w ⊨ p
def≡ w ∈ V (p)

w ⊨ ⊥ def≡ never

w ⊨ φ ∧ ψ def≡ w ⊨ φ and w ⊨ ψ

w ⊨ φ ∨ ψ def≡ w ⊨ φ or w ⊨ ψ

w ⊨ φ→ ψ
def≡ ∀v. w ⊑ v and v ⊨ φ imply v ⊨ ψ

Monotonicity: w ⊨ φ and w ⊑ v imply v ⊨ φ

Theorem (Kripke)

A formula is valid (in all frames and all words) iff it is a theorem.



Presheaves: from space to category

Play the same trick as before, but replace 2 by Set [Law73].

The category [C, Set] of presheaves C −→ Set:
▶ is a (co)complete cartesian closed category
▶ The Yoneda embedding y : Cop −→ [C, Set] given by

y(w) def

= Hom(w,−) preserves products and exponentials.

▶ A presheaf P is tiny just if Hom(P,−) preserves colimits. All

representables are tiny [and vice versa if C is Cauchy-complete].

▶ Every presheaf P : C −→ Set is a colimit of tiny objects:

P = lim−→(w,x)∈el P y(w)

There is a duality: Catopcc ≃ PshCat (Bunge’s theorem).
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Duality

This construction gives us a duality

Catop
cc

≃ PshCat

between

▶ (Cauchy-complete, small) categories (≈ ‘2D Kripke frames’)

▶ presheaf categories (≈ ‘proof-relevant prime alg. lattices’)

In short:

A two-dimensional Kripke semantics is a categorical

semantics in a presheaf category [C, Set].



II. Modal logic: Bimodules



What is intuitionistic modal logic?

Not clear, in particular around ♢! (Das and Marin [DM23])

Consider accessibility relation R ⊆ W ×W on the poset of worlds.

How to make it compatible with ⊑?

The Simpson [Sim94] criteria:

1. It should be conservative over intuitionistic logic.

2. It should prove all intuitionistic theorems (even with modalities).

3. Adding φ ∨ ¬φ should yield a classical modal logic.

4. It should satisfy the disjunction property.

5. 2 and ♢ should be independent.

6. Its semantics should be ‘intuitionistically comprehensible.’

#6 is formalised by translation to intuitionistic first-order logic.

An alternative proposal: let category theory show you the way.



Extensions

Let W ′
be a complete lattice, and let f : W → W ′

be monotone.

W [W op, 2]

W ′

↑

f
f! ⊣ f ⋆

f!: the unique join-preserving map satisfying f!(↑w) = f (w).

f!(S)
def

=
⊔

{f (w) | w ∈ S}

As both lattices are complete, this has a right adjoint f ⋆. Explicitly:

f ⋆(w ′)
def

= {w | f (w) ⊑ w ′}

Then

f!(S) ⊑ w ′ ⇐⇒ S ⊆ f ⋆(w ′)



Bimodules and Extensions

Let (W ,⊑) be a Kripke frame. R ⊆ W ×W is a bimodule just if

w ′ ⊑ w R v ⊑ v ′ =⇒ w ′ R v ′

Equivalently: R : W op ×W → 2. Now extend ΛR : W op → [W , 2]:

W op [W , 2]

[W , 2]

↑

ΛR
♦R ⊣ 2R

Concretely:

{
♦R(S)

def

= {w ∈ W | ∃v. v R w and v ∈ S}
2R(S)

def

= {w ∈ W | ∀v. w R v implies v ∈ S}

Every such adjunction on [W ,2] corresponds to a bimodule!

Duality: EBimodop ≃ PrAlgLattO.



The logic of Dzik, Järvinen, and Kondo [DJK10]

A very simple tense logic with two modalities, ♦ and 2.

Kripke semantics:

w ⊨ ♦φ
def≡ ∃v. v R w and v ⊨ φ

w ⊨ 2φ
def≡ ∀v. w R v implies v ⊨ φ

Algebraic semantics: a Heyting algebra with a Galois connection.

♦φ→ ψ

φ→ 2ψ
and

φ→ 2ψ

♦φ→ ψ

Some derivable rules:

φ→ ψ

2φ→ 2ψ

φ

2φ 2⊤
♦⊥
⊥

φ→ ψ

♦φ→ ♦ψ

The usual ♢ is not monotonic in this setting.



Lifting to categories

▶ Replace bimodules by profunctors
▶ Use left Kan extension along Yoneda

This leads to a duality EProfopcc ≃ PshCatO.

Modalities on presheaves P : C −→ Set:

(♦P)(w) =
∫ v∈C

R(v,w)× P(v)

(2P)(w) =
∫
v∈C

R(w, v) → P(v)

Theorem

A two-dimensional Kripke semantics over C uniquely corresponds to

[C, Set] [C, Set]

2

♦

⊣



III. Stable semantics



Completeness?

The developments so far only prove relative completeness:
▶ Suppose a formula is valid in all Heyting algebras.

▶ Then it is valid in all prime algebraic lattices.

▶ Then it is valid in all Kripke semantics

∴ the algebraic semantics is as complete as the Kripke semantics.

How to get the opposite direction?

The classic proof (Gehrke and van Gool [Gv24, §4.4]):

▶ Make a Kripke frame of prime filters of the algebra.
▶ Show relative completeness with respect to that.

For this logic: Dzik, Järvinen, and Kondo [DJK10, §5].

But this is non-constructive, and also not very nice.

For a closer correspondence we have to ‘tweak’ Kripke semantics.



Stable semantics

Replace

▶ the poset of worlds by a distributive lattice (W ,⊑)

▶ upper sets by (non-prime) filters
F ⊆ W is a filter just if it is an upper set and

1 ∈ F , x ∈ F and y ∈ F imply x ∧ y ∈ F

w ⊨ p
def≡ w ∈ V (p) ∈ Filt(W )

w ⊨ ⊥ def≡ (1 ≤ w) (i.e. w = 1)

w ⊨ φ ∧ ψ def≡ w ⊨ φ and w ⊨ ψ

w ⊨ φ ∨ ψ def≡ ∃v1, v2. v1 ∧ v2 ⊑ w and v1 ⊨ φ and v2 ⊨ ψ

w ⊨ φ→ ψ
def≡ ∀v. w ⊑ v and v ⊨ φ imply v ⊨ ψ

This semantics is also sound and complete for intuitionistic logic!



Spectral locales: from space to algebra

Let (W ,⊑) be a distributive lattice, and 2 def

= {0 ⊑ 1}.

[W ,2]∧ (= ∧-preserving W → 2) has many curious properties:

▶ [W ,2]∧ ∼= Filt(W ) where the order is inclusion

▶ It is a complete Heyting algebra (arbitrary joins and meets)

▶ The principal filter embedding ↑ : W op → [W , 2]∧ preserves

finite meets, finite joins, and exponentials. Hence any Heyting
algebra H can be embedded in such a lattice:

H ↪→ [Hop, 2]∧

▶ An elt. is compact (p ⊑
⊔↑

X ⇒ ∃d ∈ X . p ⊑ d) iff it is ↑w .
▶ Every filter F is a directed supremum of compact ones:

F =
⊔↑

{S | S compact, S ⊆ F} =
⊔↑

{↑w | w ∈ F}

In short: [W ,2] is a spectral locale (or a coherent frame)
(= algebraic cHA whose compact elts form a sub-lattice).



Prime algebraic lattices: from space to algebra

Let (W ,⊑) be a Kripke frame, and 2 def

= {0 ⊑ 1}.

[W ,2] (= monotone mapsW → 2) has many curious properties:

▶ [W ,2] ∼= Up(W ) where the order is inclusion

▶ It is a complete Heyting algebra (arbitrary joins and meets)

▶ The principal upper set embedding ↑ : W op → [W ,2] given by

w 7→ {v | w ⊑ v} preserves meets and exponentials.

▶ An element is a prime (p ⊑
⊔

i di ⇒ ∃i. p ⊑ di) iff it is ↑w .
▶ Every upper set S is the join of primes below it:

S =
⊔

{P | P prime, P ⊆ S} =
⊔

{↑w | w ∈ S}

In short: [W ,2] is a prime algebraic lattice [Win09].

A duality (Raney [Ran52]; Nielsen, Plotkin, and Winskel [NPW81]):

Posop ≃ PrAlgLatt



Dualities and modalities

The main duality is now

Stableop ≃ Coh

between

▶ distributive lattices and stable (= ∧-preserving) maps

▶ coherent frames and Scott-continuous,

d
-preserving maps

(not the usual category from Stone duality)

Then

The stable semantics and the Heyting algebra

semantics are equi-complete, constructively.

All previous work on modalities carries through, nearly verbatim.



Categorifying the stable semantics

Let C be a category with finite products and coproducts, which is also

a co-distributive category: a+ (c × d) ∼= (a+ c)× (a+ d).

A two-dimensional stable semantics is a semantics of proofs in

a category of algebras over a co-distributive theory.

Why? Because ‘filters’ are product-preserving presheaves over C!

If C is a Lawvere theory, then the product-preserving presheaves

[C, Set]× ∼= Sind(Cop) are the algebras of the theory C.

Fact C is co-distributive iff [C, Set]× is cartesian closed.

For any bi-ccc C we have a bi-ccc functor C ↪→ [Cop, Set]×. Hence

Theorem

The category [C, Set]× of product-preserving presheaves over a
co-distributive C is complete for typed λ-calculus with sums.
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