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What is recapture?

Beall (2013b): if we are interested in mathematical consequences of a
non-classical theory (assuming we believe there are no mathematical
dialetheias) we want the non-classical theory to be as strong as the
classical one.

How to make sure that this is so?

How to assess how strong non-classical (especially paraconsistent)
theories of arithmetic are?
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Classical recapture for arithmetic

§ Beall (2013a): we can add “shrieking rules”

φ,␣φ $ K,

where K is a sentence entailing triviality, and where φ is a formula of
the language under consideration which is assumed to behave
classically.

§ Friedman and Meyer (1992): in the relevant arithmetic R## we can
recover the theorems of classical Peano Arithmetic PA, in the
classical, i.e. arrow-free, language.
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Objections to recapture strategies

§ Halbach and Nicolai (2018): when we add a truth predicate to the
language, we lose inductive strength in the non-classical case
because of the deductive weakness of non-classical logic;

§ Nicolai (2022): strategies similar to “shrieking rules” either require
the assumption of shrieking for the whole language (and hence
effectively going back to classical logic) or fail when moving to
theories of truth/membership/property instantiation;

§ Objection to Friedman-Meyer recapture: the meaning of classical
connectives, and hence of the theorems of PA which are recovered,
is not preserved in the relevant logic (because the material
conditional loses its intended meaning).
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Recapture in paraconsistent settings

How to dispel these criticisms: proof-theoretic analysis of paraconsistent
arithmetics.

Pros:

§ The analysis is conducted in the full language of the paraconsistent
logic, thus dispelling Friedman-Meyer objections.

§ Objective measure, which can be easily adapted to extended
languages, possibly dispelling Halbach-Nicolai objections.

Cons:

§ Need to formulate ordinal notations via recursion – unclear how to
do this in a paraconsistent setting.
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Aside: Priest on arithmetical dialetheia

Priest (2006, ch. 17) argues that we can in fact formulate – in the usual
way – primitive recursive functions behaving paraconsistently, and uses
this as evidence for arithmetical dialetheia.

Heuristically: since we can formulate, via inconsistent primitive recursion,
a Gödel sentence which behaves like a dialetheia, we can argue that there
are arithmetical dialetheia.

Choi (2022): the notion of primitive recursion in a paraconsistent setting
loses its intended meaning – we should be able to reformulate primitive
recursion in a paraconsistent-friendly way.
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subDLQ

LsubDLQ ::“ x “ y | K | φ^ ψ | φ_ ψ | ␣φ |φÑ ψ | φñ ψ | @xφ

Roughly: logic obtained by supplementing LP with a relevant and a linear
conditional.

§ ñ does not contrapose but satisfies the deduction theorem;

§ Ñ does not weaken but is used to deal with substitutions of
identicals;

§ The logic satisfies weakening but not contraction (however it
satisfies a form of deduction for theorems;

§ Explosive negation can be defined as „ A :“ ␣Añ K.
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Hilbert-style calculus for subDLQ

1. K Ñ φ

2. φÑ φ

3. pφÑ ψq ^ pψ Ñ χq Ñ pφÑ χq

4. pφÑ ψq Ñ p␣ψ Ñ ␣φq

5. pφ^ ψq Ñ φ

6. pφ^ ψq Ñ pψ ^ φq

7. φÑ pφ_ ψq

8. ψ Ñ pφ_ ψq

9. φ^ pψ ^ χq Ñ pφ^ ψq ^ χ

10. φ_␣φ

11. ␣␣φØ φ

12. φ_ ψ Ø ␣p␣φ^␣ψq

13. φ^ ψ Ø ␣p␣φ_␣ψq

14. φ^ pψ _ χq Ø pφ^ χq _ pφ^ χq

15. @xφØ ␣Dx␣φ

16. DxφØ ␣@x␣φ

17. @xφÑ φpx{tq for any t

18. @xpφ_ ψq Ñ pφ_ @xψq for x not
free in φ

19. pφÑ ψq ñ pφñ ψq

20. ␣pφñ ψq ñ ␣pφÑ ψq

21. pφ^␣ψq ñ ␣pφñ ψq

22. pψ ñ χq ñ ppφñ ψq ñ pφñ χqq

23. pφñ pψ ñ χqq ñ pψ ñ pφñ χqq

24. φñ pψ ñ φq

25. pφñ χq ñ ppψ ñ χq ñ pφ_ ψ ñ
χqq

26. φñ pψ ñ φ^ ψq

27. pφñ pψ ñ χqq ñ pφ^ ψ ñ χq

28. @xpφñ ψq ñ pDyφpx{yq Ñ ψq for
x not free in ψ

29. @xpψ ñ φq ñ pψ ñ @yφpx{yqq for
x not free in ψ

30. @xpφpxq ^ ψpxqq ñ
p@xφpxq ^ @xψpxqq

31. x “ y ñ φpxq Ñ φpyq

32. pφØ ψq ñ χpφq Ø χpψq.
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Rules:
φ φñ ψ

MP
ψ

φ
@I

@xφ

Definition
A formula φ of LsubDLQ is said to be derivable form a finite multiset of
formulae Γ, in symbols Γ $ φ, if there is a sequence of formulae
φ0, . . . , φn such that φn “ φ and for every φi , either φi P Γ, or φi is an
instance of an axiom of subDLQ, or results from an application of a rule
on previous lines that have not been used in other applications or rules.

The subDLQ consequence relation satisfies the following:

§ Γ, φ $ φ;
§ If Γ $ φ and ∆, φ $ ψ, then Γ,∆ $ ψ;
§ If Γ, φ $ ψ then Γ, φ, χ $ ψ (weakening);
§ If Γ,∆ $ φ, then ∆, Γ $ φ (interchange).1

1Trivially valid since Γ and ∆ are multisets.
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subDLQ ´ A
“The goals for this chapter are more staid – to develop a more ‘classi-
cal’ arithmetic, providing some reassurance. No contradictions about
the natural numbers are proved, and the attitude is neutral as to
whether arithmetic may ultimately be inconsistent or not” (Weber
2021, p. 197)

I. 0 “ sx ñ K;

II. sx “ sy ñ x “ y ;

III. x ` 0 “ x
x ` sy “ spx ` yq;

IV. x ˆ 0 “ 0
x ˆ sy “ px ˆ yq ` x ;

V. φp0q ^ @xpφpxq ñ φpsxqq ñ @xφpxq.

@xp␣φpxq ñ Dypy ă x ^␣φpyqqq ñ @xφpxq (VI)

DxDyφpx , yq ñ DxDypφpx , yq ^ @u@vpφpu, vq ñ x ď u ^ y ď vqq (VII)

@x@yppy ă x ñ φpyqq ñ φpxqq ñ @xφpxq (VIII)
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Validities

§ Addition is commutative and associative;

§ Multiplication is commutative, associative and distributes over addition;

§ Exponentiation is definable as usual and satisfies usual properties;

§ Order is definable as follows:

x ď y :“ Dnpx ` n “ yq

x ă y :“ Dnpx ` sn “ yq

and satisfies the following properties

x ď y ñ x “ y _ x ă y

@xp0 ď xq @xp0 ă sxq

@x@ypx ď x ` yq @x@ypx ă x ` syq

@xpx ă 0ñ Kq @xpx ă sxq

ď is a partial order, while ă is a strict partial order.

§ The numbers are totally ordered.
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Division and primes
§ divpx , yq :“ Dnpxn “ yq;

§ gcdpx , y , tq :“ divpt, xq ^ divpt, yq ^ @updivpu, xq ^ divpu, yq ñ u ď tq;

§ Primeppq :“ @xp␣divpssx , pq _ ssx “ pq _ p “ 1.

§ The smallest divisor of n is prime.

§ If p is prime and divpp, xyq then divpp, xq or divpp, yq or p ‰ p.

§ divpp,
śn

i“0 xi q ñ
Žn

i“0 divpp, xi q or p ‰ p, for p prime.

Proposition (Fundamental theorem of arithmetic, Weber 2021)

Let n ą 1. Then there are primes p0, . . . , pm such that

n “
m

ź

i“0

pi

is unique up to inconsistency: for any other such q0, . . . , ql , either each pi is
identical to exactly one qj , or some pi ‰ pi .

a

aThe proof of this claim relies on complete induction.
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How to address paraconsistent recursion

§ Primitive recursive functions: can be effectively computed by an
algorithmic procedure, i.e. output is computable by performing a
finite number of steps given a basic set of instructions of finite size.

§ Inconsistent settings: the output may not be unique, since – for
instance – it could be a non-self-identical number.

§ This entails that decoding cannot be defined as in the classical case.

§ Possible solution: defining a notion of primitive recursion that is
compatible with the inconsistent case.
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Primitive recursive mappings

A relation f : X ÝÑ Y is a mapping iff:

§ f Ď X ˆ Y ;

§ @xpx P X ñ Dypy P Y ^ xx , yy P f qq;

§ xx , yy P f ñ pz ‰ y ñ xx , zy R f q

Primitive recursive mappings can be defined as usual. Also characteristic
mappings will need to be adapted to inconsistent case.

gpx1, . . . , xnq Q

#

1 iff F px1, . . . , xnq

0 iff ␣F px1, . . . , xnq

Accordingly we can define an ordinal notation up to ε0 following Pohlers
(2009) almost directly.
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Ordinal notations

§ The notion of ordinal behind our coding is classical, therefore it
satisfies Cantor’s Normal Form theorem.

§ Since addition and exponentiation satisfy the same properties as the
classical ones in subDLQ´ A, CNF theorem holds also for ordinal
notations.

§ Everything is formulated in a paraconsistent logic, so we cannot be
guaranteed that there isn’t some inconsistency in the result of some
arithmetical operation.
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Decoding

Whenever we perform an operation on ordinal notations, we obviously
want the result to transfer to the ordinals they are notations of. This is
not necessarily the case in a paraconsistent setting.

Let α, η, ξ P OT, and α “ η ` ξ. In a classical setting, this should be
equivalent to |α| “ |η| ` |ξ|.

§ α “ xα1, . . . , αny “
śn

i“0 Pnbpiq
x1`1.

§ Let, for some 0 ď i ď n, Pnbpiq ‰ Pnbpiq.

§ Since α ‰ α, α “ η ` ξ and α ‰ η ` ξ.

How to solve this: introduce an axiom negating the possibility that x ‰ x .

x ‰ x ñ K (Ref)
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Back to recapture

Given the fundamental theorem of arithmetic in subDLQ´ A, we have to
assume (Ref) to obtain a unique decoding.

Hence we effectively are assuming that the arithmetic portion of the
language satisfies explosion, i.e. behaves classically. Is this the same thing
as Beall’s shrieking?

Not really: as we will see, the recapture results we will show hold for
extensions of the language with arbitrary predicates (like a truth
predicate). Hence we are not assuming explosion for the whole language.

We have something like the kind of recapture suggested by Fiore and
Rosenblatt (2023): the strength of the classical theory is recovered by
assuming classicality only for a relevant portion of the language, namely
that appearing in some of the assumptions of our proof (more on this
later).
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Lower bound: proof strategy

What we show: subDLQ´ A, with the classical identity axiom, proves
transfinite induction for any ordinal less than ϵ0 for all formulae of the
language of subDLQ´ A possibly expanded by finitely many predicates
which behave classically or paraconsistently.

This is showed by simply adapting to subDLQ Gentzen’s proof, in the
version presented by Fischer et al. for another non-classical logic, HYPE.

Useful definitions:

§ ProgpAq :“ @η@ξpξ ă η ñ Apξqq ñ Apηq.

§ A`pθq :“ @ξp@ηpη ă ξ ñ Apηqq ñ @ηpη ă ξ ` ωθ ñ Apηqqq.
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The usual suspects

Proposition

For θ P OT, subDLQ´ A $ θ “ 0_ θ ą 0.

Lemma

$ ProgpAq ñ ProgpA`q.

Lemma

If TIαpL`
subDLQq is derivable in subDLQ´ A, then TIωαpL`

subDLQq is
derivable in subDLQ´ A.

Theorem

For all α ă ε0, subDLQ´ A $ ProgpAq ñ @ξ ă αApξq, with A being
any predicate of L`

subDLQ.



Background and motivation Technical preliminaries Primitive recursion Main results

A few things to highlight

ProgpAq ñ ProgpA`q:

§ Assume Γ :“ tProgpAq,@ζpζ ă θ Ñ A`pζqq,@ζpζ ă ξ ñ Apξqq, η ă

ξ ` ωθu2. Work towards establishing Apηq. We will show:

Γ $ θ “ 0ñ Apηq (:)

Γ $ θ ą 0ñ Apηq (;)

§ To show (;), we need an instance of CNF for ordinal notations in
subDLQ´ A. Hence classical identity for unique decoding is
fundamental.

§ All other steps follow Fischer et al. (2023) adapting the proof to
subDLQ, with minor modifications in the proof strategy to avoid
contraction.

Rest of the proof: always following Fischer et al. adapting the proof to
subDLQ.

2Where Γ is a multiset.
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Discussion

What does this tell us about recapture for paraconsistent arithmetics?

§ If we presuppose classical identity, the amount of transfinite induction for
the extended language is the same as Peano Arithmetic.

§ Dispelling the objection in Halbach and Nicolai (2018);
§ Analogous result to that for HYPE (Fischer et al. 2021) but for a

paraconsistent substructural logic.

§ We are not making the language fully classical (because the result holds
for an extended language), hence we don’t have to “shriek” the whole
language: dispelling the objection in Nicolai (2022).

§ Still, we have to presuppose classical identity for the whole of the
arithmetical language to obtain the result.

§ We also have to strengthen the axiomatisation with extra induction
axioms to be able to define the coding.

§ Bonus point: undermining Priest’s argument in favour of arithmetical
dialetheia based on a dialethic Gödel sentence.
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Many thanks!
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