Topological semantics of the predicate modal calculus QGL extended with non-well-founded proofs

Daniyar Shamkanov 1,2 Joint work with Pavel Razumnyy ²

¹Steklov Mathematical Institute of Russian Academy of Sciences **Moscow**

²National Research University Higher School of Economics Moscow

Wormshop 2024

KID K 4 B X X B X B X 9 A C

Cyclic and non-well-founded derivations

Deductive systems allowing cyclic and non-well-founded derivations can be defined for

 2990

- \triangleright modal μ -calculus,
- ▸ action logic,
- ▶ Peano arithmetic.
- ▶ GL, Grz, K⁺, etc.

Cyclic derivations in GL

Example of a cyclic derivation

$$
\left(\begin{array}{cc}\n\text{rec} & \perp \\
\text{mp} & \square \perp \\
\hline\n\end{array}\right) \qquad \qquad \square \perp \rightarrow \perp
$$

Theorem $GL = K4 + \text{cyclic derivations}, i.e.,$

$$
\Gamma \vdash_{\mathsf{GL}} A \Longleftrightarrow \Gamma \vdash_{\mathsf{cycl}} A
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

Non-well-founded derivations in GL

Definition

An ∞ -derivation in GL is a (possibly infinite) tree whose nodes are marked by modal formulas and that is constructed according to the rules (mp) and (nec). In addition, any infinite branch in an ∞-derivation must contain infinitely many applications of the rule (nec).

Example

KORKA BRADE KORA

Non-well-founded derivations in GL

Example

Definition

An *assumption leaf* of an ∞ -derivation is a leaf that is not marked by an axiom of K4.

Proposition

If a formula A is provable by an ∞-proof, then $GL \vdash A$.

Definition

We set $\Gamma \vdash_{\infty} A$ if there is an ∞ -derivation with the root marked by A in which all assumption leafs are marked by some elements of Γ.

Definition

We set $\Gamma \vDash g A$ if for any neighbourhood GL-model M

$$
(\forall B \in \Gamma \mathcal{M} \models B) \Longrightarrow \mathcal{M} \models A.
$$

KORKA BRADE KORA

Theorem

$$
\Gamma \vdash_{\infty} A \Longleftrightarrow \Gamma \vDash_{g} A.
$$

The predicate version of GL

K □ K K @ K K B K X B K G W K K K K K K K

A predicate modal calculus QGL

Let us fix a first-order signature without function symbols and constants.

Axioms

- ▸ axioms of GL
- $\rightarrow \forall x A(x) \rightarrow A(y)$
- $\rightarrow \forall x (A \rightarrow B) \rightarrow (A \rightarrow \forall x B)$, where $x \notin FV(A)$

Inference rules

$$
\mathsf{mp} \quad \frac{A}{B} \qquad \mathsf{nec} \quad \frac{A}{\Box A} \qquad \mathsf{gen} \quad \frac{A}{\forall x \, A}
$$

Theorem (Montagna 1984)

The calculus QGL is not arithmetically complete. Besides, it is not complete with respect to its Kripke semantics.

Theorem (Vardanyan 1985)

The quantified provability logic of PA (denoted by QPL(PA)) is Π^0_2 -complete.

Theorem (Borges and Joosten 2023)

The strictly positive fragments of QPL(PA) and QGL coincide and are equal to $QRC₁$.

KORKA BRADE KORA

Back to Kripke semantics of QGL

Montagna's counterexample The formula

$$
\forall x \exists y \ \Box (\Box P(y) \rightarrow P(x)) \rightarrow \forall x \ \Box P(x)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

is valid in any relational QGL-frame, but is not provable in QGL.

Non-well-founded derivations in QGL

Definition

An ∞ -derivation in QGL is a (possibly infinite) tree whose nodes are marked by predicate modal formulas and that is constructed according to the rules (mp), (gen) and (nec). In addition, any infinite branch in an ∞-derivation must contain infinitely many applications of the rule (nec).

Example

$$
\begin{array}{ll}\n\vdots \\
\text{mp } \frac{\Box \forall x_2 \ P_2(x_2) \qquad \Box \forall x_2 \ P_2(x_2) \to P_1(x_1)}{\text{gen} \frac{P_1(x_1)}{\forall x_1 \ P_1(x_1)}} \\
&\text{mc } \frac{\Box \forall x_1 \ P_1(x_1)}{\Box \forall x_1 \ P_1(x_1)} \\
&\text{mp } \frac{\Box \forall x_1 \ P_1(x_1)}{P_0(x_0)} \\
&\text{p}_0(x_0)\n\end{array}
$$

KORKA BRADE KORA

Topological completeness

Definition

An ∞ -proof is an ∞ -derivation, where all leaves are marked by axioms of QGL. We set QGL_∞ ⊢ A if there is an ∞-proof with the root marked by A.

Theorem (topological completeness)

For any formula A, QGL_∞ ⊢ A if and only if A is valid in every predicate topological frame of QGL_{∞} .

Observation We have

$$
QGL_{\infty} \nvdash \forall x \exists y \ \Box (\Box P(y) \rightarrow P(x)) \rightarrow \forall x \ \Box P(x).
$$

KORKAR KERKER SAGA

Hence, QGL_{∞} is not complete for its relational interpretation.

Definition

We put $\Gamma \vdash A$ if there is an ∞ -derivation δ with the root marked by A such that, for each leaf a of δ that is not marked by an axiom, a is marked by a formula from Γ, and there are no applications of the rules (gen) and (nec) on the path from the root of δ to the leaf a.

Notice that $\Gamma \vdash A$ if and only if $QGL_{\infty} \vdash \wedge \Gamma_0 \rightarrow A$ for some finite subset $Γ_0$ of $Γ$.

Theorem (strong local completeness)

We have $\Gamma \vdash A$ if and only if A is a local semantic consequence of Γ over the class of predicate topological frames of QGL_{∞} .

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ - ' 큰' - 10 Q Q Q

Weak topological completeness

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

A predicate topological frame (for QGL_{∞}) is a tuple (X, τ, D) , where (X, τ) is a scattered topological space and D is a non-empty domain.

A *valuation in D* is a function sending each *n*-ary predicate letter to an *n*-ary relation on D , and a *variable assignment* is a function from the set of variables $Var = \{x_0, x_1, x_2, \dots\}$ to the domain D.

KID K 4 B X X B X B X 9 A C

A predicate topological model $M = (X, \tau, D, \xi)$ is a predicate topological frame (X, τ, D) together with an indexed family of valuations $\xi = (\xi_w)_{w \in X}$ in D.

The truth of a formula A at a world w of a model $M = (X, \tau, D, \xi)$ under a variable assignment h is defined as

- \blacktriangleright $\mathcal{M}, w, h \neq \bot$.
- \triangleright *M*, *w*, *h* \models $P(x_1, ..., x_n) \Longleftrightarrow (h(x_1), ..., h(x_n)) \in \xi_w(P)$,
- \triangleright M, w, $h \models A \rightarrow B \Longleftrightarrow M$, w, $h \not\models A$ or M, w, $h \models B$,
- $\blacktriangleright M, w, h \models \Box A \Longleftrightarrow \exists U \in \tau (w \in U \text{ and } \forall w' \in \mathcal{C}$ $U \setminus \{w\}$ $\mathcal{M}, w', h \models A$,
- ▶ $M, w, h \models \forall x A \Longleftrightarrow M, w, h' \models A$ for any varible assignment h' such that $h' \stackrel{\times}{=} h$,

where $h' \stackrel{\times}{=} h$ means that $h'(y) = h(y)$ for each $y \in Var \setminus \{x\}$.

A formula A is true in M if A is true at all worlds of M under all variable assignments. In addition, A is valid in a frame $\mathcal F$ if A is true in all models over F .

KORKAR KERKER SAGA

Example The Barcan formula

 $\forall x \Box P(x) \rightarrow \Box \forall x P(x)$

is not valid in this topological semantics while domains are constant.

Lemma (soundness)

If QGL_∞ \vdash A, then A is valid in every predicate topological frame.

The converse direction:

- 1. consider a sequent calculus for QGL_{∞} with non-well-founded proofs;
- 2. combine sequent-based completeness proofs for the classical predicate calculus and for GL extended with non-well-founded proofs.

A sequent is an expression of the form $\Gamma \Rightarrow \Delta$, where Γ and Δ are finite multisets of formulas. For a finite multiset of formulas $\Gamma = B_1, \ldots, B_n$, we set $\Box \Gamma := \Box B_1, \ldots, \Box B_n$.

Non-well-founded sequent calculus

Initial sequents and inference rules of the sequent calculus S have the following form:

$$
\Gamma, P(\vec{x}) \Rightarrow P(\vec{x}), \Delta, \qquad \Gamma, \bot \Rightarrow \Delta,
$$

\n
$$
\rightarrow_L \frac{\Gamma, B \Rightarrow \Delta \qquad \Gamma \Rightarrow A, \Delta}{\Gamma, A \rightarrow B \Rightarrow \Delta}, \qquad \rightarrow_R \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \rightarrow B, \Delta},
$$

\n
$$
\forall_L \frac{\Gamma, A(y), \forall x A \Rightarrow \Delta}{\Gamma, \forall x A \Rightarrow \Delta}, \qquad \forall_R \frac{\Gamma \Rightarrow A(y), \Delta}{\Gamma \Rightarrow \forall x A, \Delta} (y \notin FV(\Gamma \cup \Delta)),
$$

\n
$$
\Box \frac{\Gamma, \Box \Gamma \Rightarrow A}{\Pi, \Box \Gamma \Rightarrow \Box A, \Delta}.
$$

Every infinite branch in a non-well-founded proof of this calculus must contain infinitely many applications of the rule (\Box) .

Example

KORK SERKER SHORE

Observation

If A is valid in every predicate topological frame, then A is true in any predicate topological model with a countable domain under any bijective variable assignment.

Lemma

If a formula $\wedge \Gamma \rightarrow \vee \Delta$ is true in in any predicate topological model with a countable domain under any bijective variable assignment, then the sequent $\Gamma \Rightarrow \Delta$ is provable in S.

Lemma

If a sequent $\Gamma \Rightarrow \Delta$ is provable in S, then $QGL_{\infty} \vdash \wedge \Gamma \rightarrow \vee \Delta$.

Corollary (completeness)

For any formula A, QGL_∞ ⊢ A if and only if A is valid in every predicate topological frame.

Strong topological completeness

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

Shehtman's ultrabouquet construction

Ultrabouquet of topological spaces

For any $i \in I$, let $\mathcal{X}_i = (X_i, \tau_i)$ be a topological space and w_i be a closed point in it. Let U be a non-principal ultrafilter in I. The ultrabouquet $\bigvee_i (\mathcal{X}_i, w_i)$ is a topological space obtained as a set from the disjoint union $\bigsqcup X_i$ by identifying all points w_i . A set $\; U$ is open in $\bigvee\limits_{i \in I}(\mathcal{X}_{i}, w_{i})$ if and only if

► the set $U \cap (X_i \setminus \{w_i\})$ is open in X_i for any $i \in I$,

► $\{i \in I \mid U \cap X_i \text{ is open in } X_i\} \in U$ whenever $w_* \in U$,

where w_* is the point of \bigvee
w (\mathcal{X}_i, w_i) obtained by identifying points W_j .

An ultrabouquet of scattered topological spaces is a scattered topological space.

K ロ X (日) X (日)

Ultrabouquet of predicate topological models

For $i \in I$, let $\mathcal{M}_i = (X_i, \tau_i, D_i, \xi_i)$ be a predicate topological model, w_i be a closed point in it and h_i be a variable assignment in \mathcal{M}_i . Given a non-principal ultrafilter $\mathcal U$ in I, we define $\bigvee_\mathcal U(\mathcal M_i,w_i)$ as a tuple (X, τ, D, ξ) , where $(X, \tau) = \bigvee_i ((X_i, \tau_i), w_i)$ and $D = \prod_i$ addition, $(a_1, \ldots, a_n) \in \xi_w(P)$ if and only if i∈I D_i . In \blacktriangleright $(\pi_i(a_1), \ldots, \pi_i(a_n)) \in (\xi_i)_w(P)$ for $w \in X_i \setminus \{w_i\},$

 \blacktriangleright { $i \in I \mid (\pi_i(a_1), \ldots, \pi_i(a_n)) \in (\xi_i)_{w}(P)$ } $\in U$ whenever $w = w_*$. Besides, we define the variable assignment h: $Var \rightarrow D$ so that $\pi_i \circ h = h_i$ for any $i \in I$.

KORKAR KERKER DRA

Definition

We set $\Gamma \models A$ if for any predicate topological model $M = (X, \tau, D, \xi)$, any world w of M and any variable assignment h: $Var \rightarrow D$

$$
\forall B \in \Gamma \mathcal{M}, w, h \in B \Longrightarrow \mathcal{M}, w, h \in A.
$$

KORKA BRADE KORA

Theorem

If $\Gamma \models A$, then there is a finite subset Γ_0 of Γ such that $\Gamma_0 \models A$.

```
Theorem (strong local completeness)
For any set of formulas Γ and any formula A,
```
 $\Gamma \vdash A \Longleftrightarrow \Gamma \vdash A$

Proof of the right-to-left implication:

If $\Gamma \models A$, then $\Gamma_0 \models A$ for some finite subset Γ_0 of Γ . Therefore, $\Lambda\Gamma_0 \rightarrow A$ is valid in every predicate topological frame and $QGL_{\infty} \vdash \wedge \Gamma_0 \rightarrow A$. It follows that $\Gamma \vdash A$.

KORKAR KERKER SAGA

Proposition

The set of theorems of QGL_{∞} is not computably enumerable (this has been checked for a signature with function symbols).

Corollary

The system QGL is not complete with respect to its topological semantics.

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ - ' 큰' - 10 Q Q Q

Conjecture

The set of theorems of QGL_∞ is Σ^1_1 -complete.

Connections with arithmetic

Question

Doesn't QGL_∞ coincide with the first-order provability logic of $ACA_0 + \{true \space \Sigma^1_2\text{-sentences}\} \text{ (or }ACA_0 + \{true \space \Sigma^1_3\text{-sentences}\})?$

Remark

For every pair of true Π^1_1 -sentences A and B, one of them implies the other over $ACA_0 + \{true \space \Sigma_1^1\text{-sentences}\}.$

Therefore, the provability logic of ACA $_0$ + $\{$ true Σ_1^1 -sentences $\}$ contains some form of linearity.

Theorem (Aguilera and Pakhomov, forthcoming)

In ZFC + «there are infinitely many Woodin cardinals», there is pair of true Π_{2n}^1 -sentences (Σ_{2n+1}^1 -sentences) that are mutually independent over the theory ACA $_0$ + $\{$ true Σ^1_{2n} -sentences $\}$ $(ACA_0 + \{true \Pi_{2n+1}^1\text{-sentences}\}).$

Some other avenues for further research:

- ▸ In the context of categorical logic, I wonder what representation theorem underlies completeness of QGL∞.
- \triangleright It seems that theorems of QGL_∞ obtained by computable ∞ -proofs belong to QPL(PA + {true Π^0_2 -sentences}). What else can be said about the fragment of QGL_{∞} with only computable ∞-proofs?

KORKA BRADE KORA

Thank you!

KOX KOR KEX KEX E 1990