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Day 1: Categoricity of PA
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Motivations

Dedekind Categoricity Theorem (1888). There is a sentence σ in
second order logic of the form ∀Xϕ(X), where ϕ(X) only has first order
quantifiers, such that σ holds in a structure M iff M ∼= (N, S, 0), where S
is the successor function.
Zermelo Quasi-categoricity Theorem (1930). There is a sentence θ in
second order logic of the form ∀Xψ(X), where ψ(X) only has first order
quantifiers, such that θ holds in a structure M iff M ∼= (Vκ,∈), where κ
is a strongly inaccessible cardinal.

Question
Are ”first-order counterparts” of these second order systems in a sense
categorical?
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Background definitions: interpretability

Let U,V be any first-order theories in languages LU and LV, respectively.

We say that
σ : FormLU → FormLV

is a translation function iff it satisies:
1 there is a designated domain formula LV-formula δ(x).
2 there is a designated mapping P 7→ FP that translates each n-ary

LU-predicate P into some n-ary LV-formula FP (including the case
when P is the equality relation).

3 σ commutes with propositional connectives, and is subject to:

σ (∀xϕ) = ∀x (δ(x) → σ(ϕ)).
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Background definitions: interpretability

We say that I is an interpretation of U in V, written U ⊴I V, if I specifies
a translation function

σ : FormLU → FormLV

such that for each ϕ ∈ LU,

U ` ϕ⇒ V ` σ(ϕ).

Remark
The above definition is not ultimately general. Additionally one can allow

U-objects to be coded by tuples of V-objects;
to use parameters.
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Interpretability from a model-theoretical perspective

Remark
Each translation σ : FormLU → FormLV gives rise to a uniform
transformation of LV-structures into LU-structures.

That is, given any LV-structure M we obtain an LU-structure σ(M) such
that

1 domain is the set defined in M by δ;
2 each predicate P (including the equality predicate) is interpreted as

the set defined in M by FP.
Moreover, an interpretation I based on σ such that U ⊴I V gives rise to
an internal model construction that uniformly builds a model MI |= U
for any M |= V, where MI := σM.
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Interpreting structures

Definition
A model N for a language L1 is interpretable in a model M for a
language L2 iff there is a translation σ : L1 → L2 such that N = σM.

Remark
Translations and interpretations can be composed.

Given T ⊴J U ⊴I V,
to define I ◦ J , just compute the T model given by J in the U-model
given by I.
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Some famous interpretabilities

Th(Z,+,×) ⊴ Th(N,+,×).

Integer numbers coded as pairs of
natural numbers (elements coded by pairs).
ZF − Infinity + ¬Infinity =: ZFfin ⊴ PA. Sets coded as binary strings.
PA ⊴ ZFfin. Numbers as finite ordinals.
PA and PA + ¬Con(PA) are mutually interpretable.
ZF− Powerset+ ∀x

(
|x| ≤ ℵ0

)
⊴ Z2 +Π1

∞ −AC. Sets as well-founded
trees (equality redefined!)
Z2 +Π1

∞ − AC ⊴ ZF − Powerset + ∀x
(
|x| ≤ ℵ0

)
.

ZF + V = L ⊴ ZF
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Biinterpretability

U is biinterpretable with V, U ' V iff there are
interpretations I and J with U ⊴I V, and V ⊴J U and

a binary U-formula F such that F is, U-verifiably, an isomorphism
between idU (the identity interpretation on U) and J ◦ I.
a binary V-formula G such that G is, V-verifiably, an isomorphism
between idV (the identity interpretation on V) and I ◦ J .

Model theoretic picture.
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Some examples

+ Let U := ∀xP(x), V := ∀x¬P(x). Then U and V are biinterpretable.
(”The stupid example”).

+ PA is biinterpretable with
ZFfin + Every set is contained in a transitive set.

+ CT is biinterpretable with ACA + ”Every set is arithmetically
definable”.

+ Z2 +Π1
∞ − AC and ZF − Powerset + ∀x

(
|x| ≤ ℵ0

)
are biinterpretable.

– CT is not biinterpretable with ACA.
– PA is not biinterpretable with ZFfin.
– ZF is not biinterpretable with ZF + V= L.

Mateusz Łełyk (WFUW) Categoricity for FO theories Ghent, Wormshop 01.09.2024 10 / 22



Some examples

+ Let U := ∀xP(x), V := ∀x¬P(x). Then U and V are biinterpretable.
(”The stupid example”).

+ PA is biinterpretable with
ZFfin + Every set is contained in a transitive set.

+ CT is biinterpretable with ACA + ”Every set is arithmetically
definable”.

+ Z2 +Π1
∞ − AC and ZF − Powerset + ∀x

(
|x| ≤ ℵ0

)
are biinterpretable.

– CT is not biinterpretable with ACA.
– PA is not biinterpretable with ZFfin.
– ZF is not biinterpretable with ZF + V= L.

Mateusz Łełyk (WFUW) Categoricity for FO theories Ghent, Wormshop 01.09.2024 10 / 22



Some examples

+ Let U := ∀xP(x), V := ∀x¬P(x). Then U and V are biinterpretable.
(”The stupid example”).

+ PA is biinterpretable with
ZFfin + Every set is contained in a transitive set.

+ CT is biinterpretable with ACA + ”Every set is arithmetically
definable”.

+ Z2 +Π1
∞ − AC and ZF − Powerset + ∀x

(
|x| ≤ ℵ0

)
are biinterpretable.

– CT is not biinterpretable with ACA.
– PA is not biinterpretable with ZFfin.
– ZF is not biinterpretable with ZF + V= L.

Mateusz Łełyk (WFUW) Categoricity for FO theories Ghent, Wormshop 01.09.2024 10 / 22



Some examples

+ Let U := ∀xP(x), V := ∀x¬P(x). Then U and V are biinterpretable.
(”The stupid example”).

+ PA is biinterpretable with
ZFfin + Every set is contained in a transitive set.

+ CT is biinterpretable with ACA + ”Every set is arithmetically
definable”.

+ Z2 +Π1
∞ − AC and ZF − Powerset + ∀x

(
|x| ≤ ℵ0

)
are biinterpretable.

– CT is not biinterpretable with ACA.
– PA is not biinterpretable with ZFfin.
– ZF is not biinterpretable with ZF + V= L.

Mateusz Łełyk (WFUW) Categoricity for FO theories Ghent, Wormshop 01.09.2024 10 / 22



Some examples

+ Let U := ∀xP(x), V := ∀x¬P(x). Then U and V are biinterpretable.
(”The stupid example”).

+ PA is biinterpretable with
ZFfin + Every set is contained in a transitive set.

+ CT is biinterpretable with ACA + ”Every set is arithmetically
definable”.

+ Z2 +Π1
∞ − AC and ZF − Powerset + ∀x

(
|x| ≤ ℵ0

)
are biinterpretable.

– CT is not biinterpretable with ACA.

– PA is not biinterpretable with ZFfin.
– ZF is not biinterpretable with ZF + V= L.

Mateusz Łełyk (WFUW) Categoricity for FO theories Ghent, Wormshop 01.09.2024 10 / 22



Some examples

+ Let U := ∀xP(x), V := ∀x¬P(x). Then U and V are biinterpretable.
(”The stupid example”).

+ PA is biinterpretable with
ZFfin + Every set is contained in a transitive set.

+ CT is biinterpretable with ACA + ”Every set is arithmetically
definable”.

+ Z2 +Π1
∞ − AC and ZF − Powerset + ∀x

(
|x| ≤ ℵ0

)
are biinterpretable.

– CT is not biinterpretable with ACA.
– PA is not biinterpretable with ZFfin.

– ZF is not biinterpretable with ZF + V= L.

Mateusz Łełyk (WFUW) Categoricity for FO theories Ghent, Wormshop 01.09.2024 10 / 22



Some examples

+ Let U := ∀xP(x), V := ∀x¬P(x). Then U and V are biinterpretable.
(”The stupid example”).

+ PA is biinterpretable with
ZFfin + Every set is contained in a transitive set.

+ CT is biinterpretable with ACA + ”Every set is arithmetically
definable”.

+ Z2 +Π1
∞ − AC and ZF − Powerset + ∀x

(
|x| ≤ ℵ0

)
are biinterpretable.

– CT is not biinterpretable with ACA.
– PA is not biinterpretable with ZFfin.
– ZF is not biinterpretable with ZF + V= L.

Mateusz Łełyk (WFUW) Categoricity for FO theories Ghent, Wormshop 01.09.2024 10 / 22



Why biinterpretability?

If U and V are sequential theories which are biinterpretable through
=-preserving interpretations, then they have a common definitional
extension (Friedmann-Visser Theorem).

If U and V are biinterpretable and one of them is finite, then both are
finite.
If M and N are biinterpretable, their automorphism groups are
isomorphic.
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Day 1: Categoricity of PA

Tightness
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Tight theories

Definition
A theory U is tight iff for all V1, V2 – (deductively closed) extensions of U
in LU

V1 ' V2 =⇒ V1 = V2.

+ Trivially, every complete theory is tight.
– PA(P) is not tight. Recall the stupid example.

Definition
A theory U is minimalist iff for every M |= U and every M ⊴ N |= U
there is exactly one M-definable embedding M ↪→ N .

Proposition
Every minimalist theory is tight.

Mateusz Łełyk (WFUW) Categoricity for FO theories Ghent, Wormshop 01.09.2024 13 / 22



Tight theories

Definition
A theory U is tight iff for all V1, V2 – (deductively closed) extensions of U
in LU

V1 ' V2 =⇒ V1 = V2.

+ Trivially, every complete theory is tight.

– PA(P) is not tight. Recall the stupid example.

Definition
A theory U is minimalist iff for every M |= U and every M ⊴ N |= U
there is exactly one M-definable embedding M ↪→ N .

Proposition
Every minimalist theory is tight.

Mateusz Łełyk (WFUW) Categoricity for FO theories Ghent, Wormshop 01.09.2024 13 / 22



Tight theories

Definition
A theory U is tight iff for all V1, V2 – (deductively closed) extensions of U
in LU

V1 ' V2 =⇒ V1 = V2.

+ Trivially, every complete theory is tight.
– PA(P) is not tight.

Recall the stupid example.

Definition
A theory U is minimalist iff for every M |= U and every M ⊴ N |= U
there is exactly one M-definable embedding M ↪→ N .

Proposition
Every minimalist theory is tight.

Mateusz Łełyk (WFUW) Categoricity for FO theories Ghent, Wormshop 01.09.2024 13 / 22



Tight theories

Definition
A theory U is tight iff for all V1, V2 – (deductively closed) extensions of U
in LU

V1 ' V2 =⇒ V1 = V2.

+ Trivially, every complete theory is tight.
– PA(P) is not tight. Recall the stupid example.

Definition
A theory U is minimalist iff for every M |= U and every M ⊴ N |= U
there is exactly one M-definable embedding M ↪→ N .

Proposition
Every minimalist theory is tight.

Mateusz Łełyk (WFUW) Categoricity for FO theories Ghent, Wormshop 01.09.2024 13 / 22



Tight theories

Definition
A theory U is tight iff for all V1, V2 – (deductively closed) extensions of U
in LU

V1 ' V2 =⇒ V1 = V2.

+ Trivially, every complete theory is tight.
– PA(P) is not tight. Recall the stupid example.

Definition
A theory U is minimalist iff for every M |= U and every M ⊴ N |= U
there is exactly one M-definable embedding M ↪→ N .

Proposition
Every minimalist theory is tight.

Mateusz Łełyk (WFUW) Categoricity for FO theories Ghent, Wormshop 01.09.2024 13 / 22



Tight theories

Definition
A theory U is tight iff for all V1, V2 – (deductively closed) extensions of U
in LU

V1 ' V2 =⇒ V1 = V2.

+ Trivially, every complete theory is tight.
– PA(P) is not tight. Recall the stupid example.

Definition
A theory U is minimalist iff for every M |= U and every M ⊴ N |= U
there is exactly one M-definable embedding M ↪→ N .

Proposition
Every minimalist theory is tight.

Mateusz Łełyk (WFUW) Categoricity for FO theories Ghent, Wormshop 01.09.2024 13 / 22



Tightness of PA

Theorem (Visser)
PA is tight.

Proof.
Show that PA is minimalist. Given an M and N |= PA such that
M ⊴ N , show that

M |= ”For every x there is the x-th N -successor of 0N .”

This gives rise to the unique definable embedding of M into N .
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Restricted fragments of PA

Let PAn denote the set of Σn-consequences of PA.

Theorem (Enayat)
For every n, PAn is not tight.

Recall the canonical models in which PA fails: suppose M |= PA and set

Kn(M) := {a ∈ M : ∃φ(x) ∈ Σn M |= φ(a) ∧ ∃!xφ(x)}.

It’s fairly easy to check that
Kn(M) ⊆ M and moreover
(TLDR: Kn(M) �Σn M) for every ψ(x) ∈ Σn and every a ∈ Kn(M)

M |= ψ(a) ⇒ Kn(M) |= ψ(a).

In particular Kn(M) |= PAn.
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I : N ⊴ Kn(M)

Recall that there are arithmetical formulae Satn(x, y) such that for each
Σn formula φ(x)

IΣ1 ` ∀y
(
Satn(⌜φ(x)⌝, y) ≡ φ(y)

)
.

Observe that for every x ∈ Kn(M)

Kn(M) |= ”x is below the least Σn definition of something” ⇐⇒ x ∈ N.

Hence N ⊴ Kn(M).
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J : Kn(M) ⊴ N

1 Choose M to be a model of PA obtained from the Arithmetized
Completeness Theorem.

2 Observe that not only M, but also a satisfaction predicate for M is
arithmetically definable.

3 Copy the definition of Kn(M).
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Kn(M) ' N

J ◦ I ∼ idN: map n to the n-th element of I ◦ J .

I ◦ J ∼ idKn(M):
1 given x ∈ Kn(M) find its least Σn-definition φx ∈ N.
2 map x to whatever φx defines (according to N-definable satisfaction

predicate) in I ◦ J .
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Day 1: Categoricity of PA

Solid theories
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Retracts

M is a retract of N iff there are
interpretations I and J with M ⊴I N , and N ⊴J M∗

a binary M-formula F such that F is, M-verifiably, an isomorphism
between idM (the identity interpretation on M) and J ◦ I.

Example
N is a retract of (Z[X]≥0,+,×).

Mateusz Łełyk (WFUW) Categoricity for FO theories Ghent, Wormshop 01.09.2024 20 / 22



Based on a picture of Saul Steinberg (1962).
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Solidity

Definition
A theory U is solid iff whenever M,N |= U and

I : M ⊴ N
J : N ⊴ NJ

witness that M is a retract of N , then there is an N -definable
isomorphism N ∼ NJ .

Remark
Minimalist =⇒ Solidity =⇒ Tightness.

Corollary
PA is solid but for every n, PAn is not solid.
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