Categoricity-like notions for first-order theories

Mateusz Łełyk

Faculty of Philosophy, University of Warsaw

Ghent, Wormshop 01.09.2024

Day 1: Categoricity of PA

Mateusz Łełyk (WFUW)

Categoricity for FO theories

Ghent, Wormshop 01.09.2024 2 / 22

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Dedekind Categoricity Theorem (1888). There is a sentence σ in second order logic of the form $\forall X \varphi(X)$, where $\varphi(X)$ only has first order quantifiers, such that σ holds in a structure \mathcal{M} iff $\mathcal{M} \cong (\mathbb{N}, S, 0)$, where S is the successor function.

Zermelo Quasi-categoricity Theorem (1930). There is a sentence θ in second order logic of the form $\forall X\psi(X)$, where $\psi(X)$ only has first order quantifiers, such that θ holds in a structure \mathcal{M} iff $\mathcal{M} \cong (V_{\kappa}, \in)$, where κ is a strongly inaccessible cardinal.

Question

Are "first-order counterparts" of these second order systems in a sense categorical?

< 日 > < 同 > < 三 > < 三 >

Let U, V be any first-order theories in languages \mathcal{L}_U and \mathcal{L}_V , respectively.

Let U,V be any first-order theories in languages \mathcal{L}_U and \mathcal{L}_V , respectively. We say that

$$\sigma: \mathsf{Form}_{\mathcal{L}_U} \to \mathsf{Form}_{\mathcal{L}_V}$$

is a translation function iff it satisies:

Let U,V be any first-order theories in languages \mathcal{L}_U and \mathcal{L}_V , respectively. We say that

$$\sigma: \mathsf{Form}_{\mathcal{L}_U} \to \mathsf{Form}_{\mathcal{L}_V}$$

is a translation function iff it satisies:

1 there is a designated *domain formula* \mathcal{L}_V -formula $\delta(x)$.

Let U, V be any first-order theories in languages \mathcal{L}_U and \mathcal{L}_V , respectively. We say that

$$\sigma: \mathsf{Form}_{\mathcal{L}_U} \to \mathsf{Form}_{\mathcal{L}_V}$$

is a translation function iff it satisies:

- **1** there is a designated *domain formula* \mathcal{L}_V -formula $\delta(x)$.
- ② there is a designated mapping $P \mapsto F_P$ that translates each *n*-ary \mathcal{L}_{U} -predicate *P* into some *n*-ary \mathcal{L}_{V} -formula F_P (including the case when *P* is the equality relation).

Let U,V be any first-order theories in languages \mathcal{L}_U and \mathcal{L}_V , respectively. We say that

$$\sigma: \mathsf{Form}_{\mathcal{L}_U} \to \mathsf{Form}_{\mathcal{L}_V}$$

is a translation function iff it satisies:

- **1** there is a designated *domain formula* \mathcal{L}_V -formula $\delta(x)$.
- ② there is a designated mapping $P \mapsto F_P$ that translates each *n*-ary \mathcal{L}_U -predicate *P* into some *n*-ary \mathcal{L}_V -formula F_P (including the case when *P* is the equality relation).
- ${f 0}~\sigma$ commutes with propositional connectives, and is subject to:

$$\sigma \, (\forall x \varphi) = \forall x \, (\delta(x) \to \sigma(\varphi)).$$

We say that \mathcal{I} is an interpretation of U in V, written $U \leq^{\mathcal{I}} V$, if \mathcal{I} specifies a translation function

 $\sigma: \mathsf{Form}_{\mathcal{L}_U} \to \mathsf{Form}_{\mathcal{L}_V}$

such that for each $\varphi \in \mathcal{L}_U$,

 $U\vdash\varphi\Rightarrow V\vdash\sigma(\varphi).$

We say that \mathcal{I} is an interpretation of U in V, written $U \leq^{\mathcal{I}} V$, if \mathcal{I} specifies a translation function

 $\sigma: \mathsf{Form}_{\mathcal{L}_U} \to \mathsf{Form}_{\mathcal{L}_V}$

such that for each $\varphi \in \mathcal{L}_U$,

 $U\vdash\varphi\Rightarrow V\vdash\sigma(\varphi).$

Remark

The above definition is not ultimately general.

We say that \mathcal{I} is an interpretation of U in V, written $U \trianglelefteq^{\mathcal{I}} V$, if \mathcal{I} specifies a translation function

 $\sigma: \mathsf{Form}_{\mathcal{L}_U} \to \mathsf{Form}_{\mathcal{L}_V}$

such that for each $\varphi \in \mathcal{L}_U$,

$$U\vdash\varphi\Rightarrow V\vdash\sigma(\varphi).$$

Remark

The above definition is not ultimately general. Additionally one can allow

- U-objects to be coded by tuples of V-objects;
- to use parameters.

Each translation σ : Form_{\mathcal{L}_U} \rightarrow Form_{\mathcal{L}_V} gives rise to a uniform transformation of \mathcal{L}_V -structures into \mathcal{L}_U -structures.

Each translation σ : Form_{\mathcal{L}_U} \rightarrow Form_{\mathcal{L}_V} gives rise to a uniform transformation of \mathcal{L}_V -structures into \mathcal{L}_U -structures.

That is, given any \mathcal{L}_V -structure \mathcal{M} we obtain an \mathcal{L}_U -structure $\sigma(\mathcal{M})$ such that

Each translation σ : Form_{\mathcal{L}_U} \rightarrow Form_{\mathcal{L}_V} gives rise to a uniform transformation of \mathcal{L}_V -structures into \mathcal{L}_U -structures.

That is, given any \mathcal{L}_V -structure \mathcal{M} we obtain an \mathcal{L}_U -structure $\sigma(\mathcal{M})$ such that

1 domain is the set defined in \mathcal{M} by δ ;

Each translation σ : Form_{\mathcal{L}_U} \rightarrow Form_{\mathcal{L}_V} gives rise to a uniform transformation of \mathcal{L}_V -structures into \mathcal{L}_U -structures.

That is, given any \mathcal{L}_V -structure \mathcal{M} we obtain an \mathcal{L}_U -structure $\sigma(\mathcal{M})$ such that

- **1** domain is the set defined in \mathcal{M} by δ ;
- **e** each predicate P (including the equality predicate) is interpreted as the set defined in \mathcal{M} by F_P .

Each translation σ : Form_{\mathcal{L}_U} \rightarrow Form_{\mathcal{L}_V} gives rise to a uniform transformation of \mathcal{L}_V -structures into \mathcal{L}_U -structures.

That is, given any \mathcal{L}_V -structure \mathcal{M} we obtain an \mathcal{L}_U -structure $\sigma(\mathcal{M})$ such that

- **1** domain is the set defined in \mathcal{M} by δ ;
- each predicate P (including the equality predicate) is interpreted as the set defined in \mathcal{M} by F_P .

Moreover, an interpretation \mathcal{I} based on σ such that $U \trianglelefteq^{\mathcal{I}} V$ gives rise to an *internal model construction that* **uniformly** builds a model $\mathcal{M}^{\mathcal{I}} \models U$ for any $\mathcal{M} \models V$, where $\mathcal{M}^{\mathcal{I}} := \sigma^{\mathcal{M}}$.

A B A A B A

Definition

A model \mathcal{N} for a language \mathcal{L}_1 is interpretable in a model \mathcal{M} for a language \mathcal{L}_2 iff there is a translation $\sigma : \mathcal{L}_1 \to \mathcal{L}_2$ such that $\mathcal{N} = \sigma^{\mathcal{M}}$.

Remark

Translations and interpretations can be composed.

Mateusz Łełyk (WFUW)

Definition

A model \mathcal{N} for a language \mathcal{L}_1 is interpretable in a model \mathcal{M} for a language \mathcal{L}_2 iff there is a translation $\sigma : \mathcal{L}_1 \to \mathcal{L}_2$ such that $\mathcal{N} = \sigma^{\mathcal{M}}$.

Remark

Translations and interpretations can be composed. Given $T \leq \mathcal{I} U \leq \mathcal{I} V$, to define $\mathcal{I} \circ \mathcal{J}$, just compute the T model given by \mathcal{J} in the U-model given by \mathcal{I} .

★ ∃ ► < ∃ ►</p>

• $\mathsf{Th}(\mathbb{Z}, +, \times) \trianglelefteq \mathsf{Th}(\mathbb{N}, +, \times).$

- Th(Z, +, ×) ≤ Th(N, +, ×). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- $ZF Infinity + \neg Infinity =: ZF_{fin} \trianglelefteq PA$.

- Th(Z, +, ×) ≤ Th(N, +, ×). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- $ZF Infinity + \neg Infinity =: ZF_{fin} \trianglelefteq PA$. Sets coded as binary strings.

- Th(Z, +, ×) ≤ Th(N, +, ×). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- $ZF Infinity + \neg Infinity =: ZF_{fin} \trianglelefteq PA$. Sets coded as binary strings.
- $\mathsf{PA} \trianglelefteq \mathsf{ZF}_{fin}$.

- Th(Z, +, ×) ≤ Th(N, +, ×). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- $ZF Infinity + \neg Infinity =: ZF_{fin} \trianglelefteq PA$. Sets coded as binary strings.
- $PA \trianglelefteq ZF_{fin}$. Numbers as finite ordinals.

- Th(Z, +, ×) ≤ Th(N, +, ×). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- $ZF Infinity + \neg Infinity =: ZF_{fin} \trianglelefteq PA$. Sets coded as binary strings.
- PA ⊴ ZF_{fin}. Numbers as finite ordinals.
- PA and PA + ¬Con(PA) are mutually interpretable.

- Th(Z, +, ×) ≤ Th(N, +, ×). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- $ZF Infinity + \neg Infinity =: ZF_{fin} \trianglelefteq PA$. Sets coded as binary strings.
- PA ⊴ ZF_{fin}. Numbers as finite ordinals.
- PA and PA + ¬Con(PA) are mutually interpretable.
- $\mathsf{ZF} \mathsf{Powerset} + \forall x (|x| \le \aleph_0) \trianglelefteq \mathsf{Z}_2 + \Pi_\infty^1 \mathsf{AC}.$

- Th(Z, +, ×) ≤ Th(N, +, ×). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- $ZF Infinity + \neg Infinity =: ZF_{fin} \trianglelefteq PA$. Sets coded as binary strings.
- PA ⊴ ZF_{fin}. Numbers as finite ordinals.
- PA and PA + \neg Con(PA) are mutually interpretable.
- $ZF Powerset + \forall x (|x| \leq \aleph_0) \leq Z_2 + \Pi_{\infty}^1 AC$. Sets as well-founded trees (equality redefined!)

- Th(Z, +, ×) ≤ Th(N, +, ×). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- $ZF Infinity + \neg Infinity =: ZF_{fin} \trianglelefteq PA$. Sets coded as binary strings.
- PA ⊴ ZF_{fin}. Numbers as finite ordinals.
- PA and PA + \neg Con(PA) are mutually interpretable.
- $ZF Powerset + \forall x (|x| \le \aleph_0) \le Z_2 + \Pi_{\infty}^1 AC$. Sets as well-founded trees (equality redefined!)
- $Z_2 + \Pi_{\infty}^1 AC \trianglelefteq ZF Powerset + \forall x (|x| \le \aleph_0).$

- Th(Z, +, ×) ≤ Th(N, +, ×). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- $ZF Infinity + \neg Infinity =: ZF_{fin} \trianglelefteq PA$. Sets coded as binary strings.
- PA ⊴ ZF_{fin}. Numbers as finite ordinals.
- PA and PA + \neg Con(PA) are mutually interpretable.
- $ZF Powerset + \forall x (|x| \le \aleph_0) \le Z_2 + \Pi_{\infty}^1 AC$. Sets as well-founded trees (equality redefined!)
- $Z_2 + \Pi_{\infty}^1 AC \trianglelefteq ZF Powerset + \forall x (|x| \le \aleph_0).$
- $ZF + V = L \trianglelefteq ZF$

• interpretations $\mathcal I$ and $\mathcal J$ with $U \trianglelefteq^{\mathcal I} V$, and $V \trianglelefteq^{\mathcal J} U$ and

- interpretations $\mathcal I$ and $\mathcal J$ with $U \trianglelefteq^{\mathcal I} V$, and $V \trianglelefteq^{\mathcal J} U$ and
- a binary *U*-formula *F* such that *F* is, *U*-verifiably, an isomorphism between id_U (the identity interpretation on *U*) and $\mathcal{J} \circ \mathcal{I}$.

- interpretations $\mathcal I$ and $\mathcal J$ with $U \trianglelefteq^{\mathcal I} V$, and $V \trianglelefteq^{\mathcal J} U$ and
- a binary *U*-formula *F* such that *F* is, *U*-verifiably, an isomorphism between id_U (the identity interpretation on *U*) and $\mathcal{J} \circ \mathcal{I}$.
- a binary V-formula G such that G is, V-verifiably, an isomorphism between id_V (the identity interpretation on V) and $\mathcal{I} \circ \mathcal{J}$.

- interpretations $\mathcal I$ and $\mathcal J$ with $U \trianglelefteq^{\mathcal I} V$, and $V \trianglelefteq^{\mathcal J} U$ and
- a binary *U*-formula *F* such that *F* is, *U*-verifiably, an isomorphism between id_U (the identity interpretation on *U*) and $\mathcal{J} \circ \mathcal{I}$.
- a binary V-formula G such that G is, V-verifiably, an isomorphism between id_V (the identity interpretation on V) and $\mathcal{I} \circ \mathcal{J}$.

Model theoretic picture.

+ Let U := ∀xP(x), V := ∀x¬P(x). Then U and V are biinterpretable.
 ("The stupid example").

- + Let U := ∀xP(x), V := ∀x¬P(x). Then U and V are biinterpretable.
 ("The stupid example").
- $+\,$ PA is biinterpretable with $\rm ZF_{\it fin} + Every$ set is contained in a transitive set.

- + Let U := ∀xP(x), V := ∀x¬P(x). Then U and V are biinterpretable.
 ("The stupid example").
- + PA is biinterpretable with ZF_{fin} + Every set is contained in a transitive set.
- + CT is biinterpretable with ACA + "Every set is arithmetically definable".

- + Let U := ∀xP(x), V := ∀x¬P(x). Then U and V are biinterpretable.
 ("The stupid example").
- + PA is biinterpretable with ZF_{fin} + Every set is contained in a transitive set.
- + CT is biinterpretable with ACA + "Every set is arithmetically definable".
- $+ \ Z_2 + \Pi_{\infty}^1 \mathsf{AC} \ \text{and} \ \mathsf{ZF} \mathsf{Powerset} + \forall x \big(|x| \leq \aleph_0 \big) \ \text{are biinterpretable}.$
- + Let U := ∀xP(x), V := ∀x¬P(x). Then U and V are biinterpretable.
 ("The stupid example").
- + PA is biinterpretable with ZF_{fin} + Every set is contained in a transitive set.
- + CT is biinterpretable with ACA + "Every set is arithmetically definable".
- $+ Z_2 + \Pi_{\infty}^1 AC$ and $ZF Powerset + \forall x (|x| \le \aleph_0)$ are biinterpretable.
- CT is **not** biinterpretable with ACA.

- + Let $U := \forall x P(x)$, $V := \forall x \neg P(x)$. Then U and V are biinterpretable. ("The stupid example").
- + PA is biinterpretable with ZF_{fin} + Every set is contained in a transitive set.
- + CT is biinterpretable with ACA + "Every set is arithmetically definable".
- $+ Z_2 + \Pi_{\infty}^1 AC$ and $ZF Powerset + \forall x (|x| \le \aleph_0)$ are biinterpretable.
- CT is **not** biinterpretable with ACA.
- PA is **not** biinterpretable with ZF_{fin} .

- + Let $U := \forall x P(x)$, $V := \forall x \neg P(x)$. Then U and V are biinterpretable. ("The stupid example").
- + PA is biinterpretable with ZF_{fin} + Every set is contained in a transitive set.
- + CT is biinterpretable with ACA + "Every set is arithmetically definable".
- $+ Z_2 + \Pi_{\infty}^1 AC$ and $ZF Powerset + \forall x (|x| \le \aleph_0)$ are biinterpretable.
- CT is **not** biinterpretable with ACA.
- PA is **not** biinterpretable with ZF_{fin} .
- ZF is **not** biinterpretable with ZF + V = L.

• If U and V are sequential theories which are biinterpretable through =-preserving interpretations, then they have a common definitional extension (Friedmann-Visser Theorem).

- If *U* and *V* are sequential theories which are biinterpretable through =-preserving interpretations, then they have a common definitional extension (Friedmann-Visser Theorem).
- If *U* and *V* are biinterpretable and one of them is finite, then both are finite.

- If *U* and *V* are sequential theories which are biinterpretable through =-preserving interpretations, then they have a common definitional extension (Friedmann-Visser Theorem).
- If *U* and *V* are biinterpretable and one of them is finite, then both are finite.
- If ${\mathcal M}$ and ${\mathcal N}$ are biinterpretable, their automorphism groups are isomorphic.

Day 1: Categoricity of PA

Tightness

Mateusz Łełyk (WFUW)

Categoricity for FO theories

Ghent, Wormshop 01.09.2024 12 / 22

A theory U is tight iff for all V_1 , V_2 – (deductively closed) extensions of U in \mathcal{L}_U

$$V_1 \simeq V_2 \Longrightarrow V_1 = V_2.$$

A theory U is tight iff for all V_1 , V_2 – (deductively closed) extensions of U in \mathcal{L}_U

$$V_1 \simeq V_2 \Longrightarrow V_1 = V_2.$$

+ Trivially, every complete theory is tight.

A theory U is tight iff for all V_1 , V_2 – (deductively closed) extensions of U in \mathcal{L}_U

$$V_1 \simeq V_2 \Longrightarrow V_1 = V_2.$$

- + Trivially, every complete theory is tight.
- PA(P) is not tight.

A theory U is tight iff for all V_1 , V_2 – (deductively closed) extensions of U in \mathcal{L}_U

$$V_1 \simeq V_2 \Longrightarrow V_1 = V_2.$$

+ Trivially, every complete theory is tight.

- PA(P) is not tight. Recall the stupid example.

A theory U is tight iff for all V_1 , V_2 – (deductively closed) extensions of U in \mathcal{L}_U

$$V_1 \simeq V_2 \Longrightarrow V_1 = V_2.$$

+ Trivially, every complete theory is tight.

- PA(P) is not tight. Recall the stupid example.

Definition

A theory U is minimalist iff for every $\mathcal{M} \models U$ and every $\mathcal{M} \trianglelefteq \mathcal{N} \models U$ there is **exactly one** \mathcal{M} -**definable** embedding $\mathcal{M} \hookrightarrow \mathcal{N}$.

• • = • • = •

A theory U is tight iff for all V_1 , V_2 – (deductively closed) extensions of U in \mathcal{L}_U

$$V_1 \simeq V_2 \Longrightarrow V_1 = V_2.$$

+ Trivially, every complete theory is tight.

- PA(P) is not tight. Recall the stupid example.

Definition

A theory U is minimalist iff for every $\mathcal{M} \models U$ and every $\mathcal{M} \trianglelefteq \mathcal{N} \models U$ there is **exactly one** \mathcal{M} -**definable** embedding $\mathcal{M} \hookrightarrow \mathcal{N}$.

Proposition

Every minimalist theory is tight.

Mateusz Łełyk (WFUW)

Ghent, Wormshop 01.09.2024 13 / 22

э

< □ > < □ > < □ > < □ > < □ > < □ >

PA is tight.

э

• • = • • = •

PA is tight.

Proof.

Show that PA is minimalist.

Mateusz Łełyk (WFUW)

• • = • • = •

< 口 > < 凸

PA is tight.

Proof.

Show that PA is minimalist. Given an $\mathcal M$ and $\mathcal N\models PA$ such that $\mathcal M\trianglelefteq \mathcal N,$ show that

 $\mathcal{M} \models$ "For every *x* there is the *x*-th \mathcal{N} -successor of $0_{\mathcal{N}}$."

PA is tight.

Proof.

Show that PA is minimalist. Given an $\mathcal M$ and $\mathcal N\models PA$ such that $\mathcal M\trianglelefteq \mathcal N,$ show that

 $\mathcal{M} \models$ "For every *x* there is the *x*-th \mathcal{N} -successor of $0_{\mathcal{N}}$."

This gives rise to the unique **definable** embedding of \mathcal{M} into \mathcal{N} .

Restricted fragments of PA

Let PA_n denote the set of Σ_n -consequences of PA.

Theorem (Enayat)

For every n, PA_n is **not** tight.

Theorem (Enayat)

For every n, PA_n is **not** tight.

Recall the canonical models in which PA fails:

Theorem (Enayat)

For every n, PA_n is **not** tight.

Recall the canonical models in which PA fails: suppose $\mathcal{M} \models$ PA and set

$$\mathcal{K}^n(\mathcal{M}) := \{ a \in \mathcal{M} : \exists \phi(x) \in \Sigma_n \ \mathcal{M} \models \phi(a) \land \exists ! x \phi(x) \}.$$

It's fairly easy to check that

Theorem (Enayat)

For every n, PA_n is **not** tight.

Recall the canonical models in which PA fails: suppose $\mathcal{M} \models \mathsf{PA}$ and set

$$\mathcal{K}^n(\mathcal{M}) := \{ a \in \mathcal{M} : \exists \phi(x) \in \Sigma_n \; \; \mathcal{M} \models \phi(a) \land \exists ! x \phi(x) \}.$$

It's fairly easy to check that

• $K^n(\mathcal{M}) \subseteq \mathcal{M}$

Theorem (Enayat)

For every n, PA_n is **not** tight.

Recall the canonical models in which PA fails: suppose $\mathcal{M} \models \mathsf{PA}$ and set

$$\mathcal{K}^n(\mathcal{M}) := \{ a \in \mathcal{M} : \exists \phi(x) \in \Sigma_n \; \; \mathcal{M} \models \phi(a) \land \exists ! x \phi(x) \}.$$

It's fairly easy to check that

• $K^n(\mathcal{M}) \subseteq \mathcal{M}$ and moreover

Theorem (Enayat)

For every n, PA_n is **not** tight.

Recall the canonical models in which PA fails: suppose $\mathcal{M} \models \mathsf{PA}$ and set

$$\mathcal{K}^n(\mathcal{M}) := \{ a \in \mathcal{M} : \exists \phi(x) \in \Sigma_n \; \; \mathcal{M} \models \phi(a) \land \exists ! x \phi(x) \}.$$

It's fairly easy to check that

- $K^n(\mathcal{M}) \subseteq \mathcal{M}$ and moreover
- (TLDR: $K^n(\mathcal{M}) \preceq_{\Sigma_n} \mathcal{M}$)

Theorem (Enayat)

For every n, PA_n is **not** tight.

Recall the canonical models in which PA fails: suppose $\mathcal{M} \models \mathsf{PA}$ and set

$$\mathcal{K}^n(\mathcal{M}) := \{ a \in \mathcal{M} : \exists \phi(x) \in \Sigma_n \; \; \mathcal{M} \models \phi(a) \land \exists ! x \phi(x) \}.$$

It's fairly easy to check that

- $K^n(\mathcal{M}) \subseteq \mathcal{M}$ and moreover
- (TLDR: $\mathcal{K}^n(\mathcal{M}) \preceq_{\Sigma_n} \mathcal{M}$) for every $\psi(x) \in \Sigma_n$ and every $a \in \mathcal{K}^n(\mathcal{M})$

$$\mathcal{M} \models \psi(\mathbf{a}) \Rightarrow \mathbf{K}^{\mathbf{n}}(\mathcal{M}) \models \psi(\mathbf{a}).$$

Theorem (Enayat)

For every n, PA_n is **not** tight.

Recall the canonical models in which PA fails: suppose $\mathcal{M} \models \mathsf{PA}$ and set

$$\mathcal{K}^n(\mathcal{M}) := \{ a \in \mathcal{M} : \exists \phi(x) \in \Sigma_n \; \; \mathcal{M} \models \phi(a) \land \exists ! x \phi(x) \}.$$

It's fairly easy to check that

- $K^n(\mathcal{M}) \subseteq \mathcal{M}$ and moreover
- (TLDR: $\mathcal{K}^n(\mathcal{M}) \preceq_{\Sigma_n} \mathcal{M}$) for every $\psi(x) \in \Sigma_n$ and every $a \in \mathcal{K}^n(\mathcal{M})$

$$\mathcal{M} \models \psi(\mathbf{a}) \Rightarrow \mathbf{K}^{\mathbf{n}}(\mathcal{M}) \models \psi(\mathbf{a}).$$

In particular $K^n(\mathcal{M}) \models \mathsf{PA}_n$.

Recall that there are arithmetical formulae $\operatorname{Sat}_n(x, y)$ such that for each Σ_n formula $\phi(x)$

$$\Sigma_1 \vdash \forall y (\mathsf{Sat}_n(\ulcorner \phi(x)\urcorner, y) \equiv \phi(y)).$$

Recall that there are arithmetical formulae $Sat_n(x, y)$ such that for each Σ_n formula $\phi(x)$

$$\Sigma_1 \vdash \forall y (\mathsf{Sat}_n(\ulcorner \phi(x)\urcorner, y) \equiv \phi(y)).$$

Observe that for every $x \in K^n(\mathcal{M})$

 $\mathcal{K}^n(\mathcal{M}) \models$ "x is below the least Σ_n definition of something" $\iff x \in \mathbb{N}$.

Recall that there are arithmetical formulae $Sat_n(x, y)$ such that for each Σ_n formula $\phi(x)$

$$\Sigma_1 \vdash \forall y (\mathsf{Sat}_n(\ulcorner \phi(x)\urcorner, y) \equiv \phi(y)).$$

Observe that for every $x \in K^n(\mathcal{M})$

 $\mathcal{K}^{n}(\mathcal{M}) \models "x$ is below the least Σ_{n} definition of something" $\iff x \in \mathbb{N}$. Hence $\mathbb{N} \trianglelefteq \mathcal{K}^{n}(\mathcal{M})$. Choose *M* to be a model of PA obtained from the Arithmetized Completeness Theorem.

- Choose *M* to be a model of PA obtained from the Arithmetized Completeness Theorem.
- $\textcircled{Observe that not only \mathcal{M}, but also a satisfaction predicate for \mathcal{M} is arithmetically definable.}$

- Choose *M* to be a model of PA obtained from the Arithmetized Completeness Theorem.
- Observe that not only *M*, but also a satisfaction predicate for *M* is arithmetically definable.
- **③** Copy the definition of $K^n(\mathcal{M})$.

• $\mathcal{J} \circ \mathcal{I} \sim id_{\mathbb{N}}$: map *n* to the *n*-th element of $\mathcal{I} \circ \mathcal{J}$.

э

• • = • • = •

- $\mathcal{J} \circ \mathcal{I} \sim \operatorname{id}_{\mathbb{N}}$: map *n* to the *n*-th element of $\mathcal{I} \circ \mathcal{J}$.
- $\mathcal{I} \circ \mathcal{J} \sim \mathsf{id}_{K^n(\mathcal{M})}$:

э

A B M A B M

- $\mathcal{J} \circ \mathcal{I} \sim \mathsf{id}_{\mathbb{N}}$: map *n* to the *n*-th element of $\mathcal{I} \circ \mathcal{J}$.
- $\mathcal{I} \circ \mathcal{J} \sim \operatorname{id}_{K^n(\mathcal{M})}$: • given $x \in K^n(\mathcal{M})$ find its least Σ_n -definition $\phi_x \in \mathbb{N}$.

- $\mathcal{J} \circ \mathcal{I} \sim \mathsf{id}_{\mathbb{N}}$: map *n* to the *n*-th element of $\mathcal{I} \circ \mathcal{J}$.
- *I* ∘ *J* ∼ id_{Kⁿ(M)}:
 given x ∈ Kⁿ(M) find its least Σ_n-definition φ_x ∈ N.
 map x to whatever φ_x defines (according to N-definable satisfaction predicate) in *I* ∘ *J*.
Day 1: Categoricity of PA

Solid theories

Mateusz Łełyk (WFUW)

Categoricity for FO theories

${\mathcal M}$ is a $\mathit{retract}$ of ${\mathcal N}$ iff there are

- interpretations $\mathcal I$ and $\mathcal J$ with $\mathcal M \trianglelefteq^{\mathcal I} \mathcal N$, and $\mathcal N \trianglelefteq^{\mathcal J} \mathcal M^*$
- a binary *M*-formula *F* such that *F* is, *M*-verifiably, an isomorphism between id_{*M*} (the identity interpretation on *M*) and *J* ∘ *I*.

Example

 \mathbb{N} is a retract of $(\mathbb{Z}[X]_{\geq 0}, +, \times)$.

Based on a picture of Saul Steinberg (1962).

Mateusz Łełyk (WFUW)

Categoricity for FO theories

Solidity

Definition

A theory U is solid iff whenever $\mathcal{M}, \mathcal{N} \models U$ and

 $\mathcal{I}: \mathcal{M} \trianglelefteq \mathcal{N}$ $\mathcal{J}: \mathcal{N} \trianglelefteq \mathcal{N}^{\mathcal{J}}$

witness that \mathcal{M} is a retract of \mathcal{N} , then there is an \mathcal{N} -definable isomorphism $\mathcal{N} \sim \mathcal{N}^{\mathcal{J}}$.

Remark

 $Minimalist \implies Solidity \implies Tightness.$

Corollary

PA is solid but for every n, PA_n is not solid.

Mateusz Łełyk (WFUW)

э

A D N A B N A B N A B N