Categoricity-like notions for first-order theories

Mateusz Łełyk

Faculty of Philosophy, University of Warsaw

Ghent, Wormshop 01.09.2024

 \leftarrow \Box

[Day 1: Categoricity of PA](#page-1-0)

Mateusz Łełyk (WFUW) [Categoricity for FO theories](#page-0-0) Ghent, Wormshop 01.09.2024 2/22

 $A \Box B$ $A \Box B$ $A \Box B$ $A \Box B$ $A \Box B$

 299

э

Dedekind Categoricity Theorem (1888). *There is a sentence σ in second order logic of the form ∀Xϕ*(*X*)*, where ϕ*(*X*) *only has first order quantifiers, such that σ holds in a structure M iff M ∼*= (N*, S,* 0)*, where S is the successor function.*

Zermelo Quasi-categoricity Theorem (1930). *There is a sentence θ in second order logic of the form ∀Xψ*(*X*)*, where ψ*(*X*) *only has first order quantifiers, such that* θ *holds in a structure* \mathcal{M} *iff* $\mathcal{M} \cong (V_{\kappa}, \in)$ *, where* κ *is a strongly inaccessible cardinal.*

Question

Are "first-order counterparts" of these second order systems in a sense categorical?

 QQ

イロト イ母 トイヨ トイヨ トー

Let *U*, *V* be any first-order theories in languages \mathcal{L}_U and \mathcal{L}_V , respectively.

4 0 F

 QQ

$$
\sigma: \mathsf{Form}_{\mathcal{L}_U} \to \mathsf{Form}_{\mathcal{L}_V}
$$

is a *translation function* iff it satisies:

$$
\sigma: \mathsf{Form}_{\mathcal{L}_U} \to \mathsf{Form}_{\mathcal{L}_V}
$$

is a *translation function* iff it satisies:

1 there is a designated *domain formula* \mathcal{L}_V -formula $\delta(x)$.

$$
\sigma: \mathsf{Form}_{\mathcal{L}_U} \to \mathsf{Form}_{\mathcal{L}_V}
$$

is a *translation function* iff it satisies:

- **1** there is a designated *domain formula* \mathcal{L}_V -formula $\delta(x)$.
- ² there is a designated mapping *P 7→ F^P* that translates each *n*-ary \mathcal{L}_U -predicate *P* into some *n*-ary \mathcal{L}_V -formula F_P (including the case when *P* is the equality relation).

$$
\sigma: \mathsf{Form}_{\mathcal{L}_U} \to \mathsf{Form}_{\mathcal{L}_V}
$$

is a *translation function* iff it satisies:

- **1** there is a designated *domain formula* \mathcal{L}_V -formula $\delta(x)$.
- ² there is a designated mapping *P 7→ F^P* that translates each *n*-ary \mathcal{L}_U -predicate P into some *n*-ary \mathcal{L}_V -formula F_P (including the case when *P* is the equality relation).
- ³ *σ* commutes with propositional connectives, and is subject to:

$$
\sigma(\forall x \varphi) = \forall x (\delta(x) \to \sigma(\varphi)).
$$

We say that *I is an interpretation of U in V*, written $U \lhd^{I} V$, if *I* specifies a *translation function*

 σ : Form $_{\mathcal{L}_U}$ \rightarrow Form $_{\mathcal{L}_V}$

such that for each $\varphi \in \mathcal{L}_U$,

 $U \vdash \varphi \Rightarrow V \vdash \sigma(\varphi)$.

We say that *I is an interpretation of U in V*, written $U \lhd^{I} V$, if *I* specifies a *translation function*

 σ : Form $_{\mathcal{L}_U}$ \rightarrow Form $_{\mathcal{L}_V}$

such that for each $\varphi \in \mathcal{L}_U$,

$$
U \vdash \varphi \Rightarrow V \vdash \sigma(\varphi).
$$

Remark

The above definition is not ultimately general.

We say that *I is an interpretation of U in V*, written $U \lhd^{I} V$, if *I* specifies a *translation function*

 σ : Form c_{U} \rightarrow Form c_{U}

such that for each $\varphi \in \mathcal{L}_U$,

$$
U \vdash \varphi \Rightarrow V \vdash \sigma(\varphi).
$$

Remark

The above definition is not ultimately general. Additionally one can allow

- *U-objects to be coded by tuples of V-objects;*
- *to use parameters.*

Each translation σ : Form_{*L_U*} → Form_{*L_V}* gives rise to a uniform</sub> *transformation of LV-structures into LU-structures.*

Each translation σ : Form_{*L_U*} → Form_{*L_V}* gives rise to a uniform</sub> *transformation of LV-structures into LU-structures.*

That is, given any \mathcal{L}_V -structure M we obtain an \mathcal{L}_U -structure $\sigma(\mathcal{M})$ such that

Each translation σ : Form_{*L_U*} → Form_{*L_V}* gives rise to a uniform</sub> *transformation of LV-structures into LU-structures.*

That is, given any \mathcal{L}_V -structure M we obtain an \mathcal{L}_U -structure $\sigma(\mathcal{M})$ such that

1 domain is the set defined in M by δ ;

Each translation σ : Form_{*L_U*} → Form_{*L_V}* gives rise to a uniform</sub> *transformation of LV-structures into LU-structures.*

That is, given any \mathcal{L}_V -structure M we obtain an \mathcal{L}_U -structure $\sigma(\mathcal{M})$ such that

- **1** domain is the set defined in M by δ ;
- ² each predicate *P* (including the equality predicate) is interpreted as the set defined in *M* by *FP*.

Each translation σ : Form_{*L_U*} → Form_{*L_V}* gives rise to a uniform</sub> *transformation of LV-structures into LU-structures.*

That is, given any \mathcal{L}_V -structure M we obtain an \mathcal{L}_U -structure $\sigma(\mathcal{M})$ such that

- **1** domain is the set defined in M by δ ;
- ² each predicate *P* (including the equality predicate) is interpreted as the set defined in *M* by *FP*.

Moreover, an interpretation *I* based on σ such that $U \lhd^{\mathcal{I}} V$ gives rise to an *internal model construction that* $\bm{\mathit{uniformly}}$ *builds a model* $\mathcal{M}^{\mathcal{I}}\models \mathcal{U}$ *for any* $\mathcal{M} \models V$, where $\mathcal{M}^{\mathcal{I}} := \sigma^{\mathcal{M}}$.

 200

イロト イ母ト イヨト イヨト

Definition

A model N for a language \mathcal{L}_1 is interpretable in a model M for a language \mathcal{L}_2 iff there is a translation $\sigma : \mathcal{L}_1 \to \mathcal{L}_2$ such that $\mathcal{N} = \sigma^{\mathcal{M}}$.

Remark

Translations and interpretations can be composed.

Definition

A model N for a language \mathcal{L}_1 is interpretable in a model M for a language \mathcal{L}_2 iff there is a translation $\sigma : \mathcal{L}_1 \to \mathcal{L}_2$ such that $\mathcal{N} = \sigma^{\mathcal{M}}$.

Remark

Translations and interpretations can be composed. Given $T \triangleleft \mathcal{I}$ $U \triangleleft \mathcal{I}$ *V. to define I ◦ J , just compute the T model given by J in the U-model given by I.*

\bullet Th($\mathbb{Z}, +, \times$) ⊴ Th($\mathbb{N}, +, \times$).

4 D F

 299

Þ

- Th(Z*,* +*, ×*) ⊴ Th(N*,* +*, ×*). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- ZF *−* Infinity + *¬*Infinity =: ZF*fin* ⊴ PA.

- Th(Z*,* +*, ×*) ⊴ Th(N*,* +*, ×*). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- ZF *−* Infinity + *¬*Infinity =: ZF*fin* ⊴ PA. Sets coded as binary strings.

- Th(Z*,* +*, ×*) ⊴ Th(N*,* +*, ×*). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- ZF *−* Infinity + *¬*Infinity =: ZF*fin* ⊴ PA. Sets coded as binary strings.
- PA ⊴ ZF*fin*.

- Th(Z*,* +*, ×*) ⊴ Th(N*,* +*, ×*). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- ZF *−* Infinity + *¬*Infinity =: ZF*fin* ⊴ PA. Sets coded as binary strings.
- PA ⊴ ZF*fin*. Numbers as finite ordinals.

- Th(Z*,* +*, ×*) ⊴ Th(N*,* +*, ×*). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- ZF *−* Infinity + *¬*Infinity =: ZF*fin* ⊴ PA. Sets coded as binary strings.
- PA ⊴ ZF*fin*. Numbers as finite ordinals.
- PA and $PA + \neg Con(PA)$ are mutually interpretable.

- Th(Z*,* +*, ×*) ⊴ Th(N*,* +*, ×*). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- ZF *−* Infinity + *¬*Infinity =: ZF*fin* ⊴ PA. Sets coded as binary strings.
- PA ⊴ ZF*fin*. Numbers as finite ordinals.
- PA and $PA + \neg Con(PA)$ are mutually interpretable.
- $\mathsf{ZF}-\mathsf{Powerset}+\forall \mathsf{x} \big(|\mathsf{x}| \leq \aleph_0\big) \trianglelefteq \mathsf{Z}_2 + \Pi^1_\infty-\mathsf{AC}.$

- Th(Z*,* +*, ×*) ⊴ Th(N*,* +*, ×*). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- ZF *−* Infinity + *¬*Infinity =: ZF*fin* ⊴ PA. Sets coded as binary strings.
- PA ⊴ ZF*fin*. Numbers as finite ordinals.
- PA and $PA + \neg Con(PA)$ are mutually interpretable.
- ZF *−* Powerset + *∀x* (*|x| ≤ ℵ*⁰) ⊴ Z² + Π¹ *[∞] [−]* AC. Sets as well-founded trees (equality redefined!)

 QQ

- Th(Z*,* +*, ×*) ⊴ Th(N*,* +*, ×*). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- ZF *−* Infinity + *¬*Infinity =: ZF*fin* ⊴ PA. Sets coded as binary strings.
- PA ⊴ ZF*fin*. Numbers as finite ordinals.
- PA and $PA + \neg Con(PA)$ are mutually interpretable.
- ZF *−* Powerset + *∀x* (*|x| ≤ ℵ*⁰) ⊴ Z² + Π¹ *[∞] [−]* AC. Sets as well-founded trees (equality redefined!)
- $Z_2 + \Pi_{\infty}^1 AC \leq ZF Powerset + \forall x(|x| \leq \aleph_0).$

 QQ

- Th(Z*,* +*, ×*) ⊴ Th(N*,* +*, ×*). Integer numbers coded as pairs of natural numbers (elements coded by pairs).
- ZF *−* Infinity + *¬*Infinity =: ZF*fin* ⊴ PA. Sets coded as binary strings.
- PA ⊴ ZF*fin*. Numbers as finite ordinals.
- PA and $PA + \neg Con(PA)$ are mutually interpretable.
- ZF *−* Powerset + *∀x* (*|x| ≤ ℵ*⁰) ⊴ Z² + Π¹ *[∞] [−]* AC. Sets as well-founded trees (equality redefined!)
- $Z_2 + \Pi_{\infty}^1 AC \leq ZF Powerset + \forall x(|x| \leq \aleph_0).$
- ZF + *V* = *L* ⊴ ZF

 QQQ

• interpretations *I* and *J* with $U \leq^{I} V$, and $V \leq^{J} U$ and

4 D F

 QQ

- interpretations *I* and *J* with *U* ⊴*^I V*, and *V* ⊴*^J U* and
- a binary *U*-formula *F* such that *F* is, *U*-verifiably, an isomorphism between id_{U} (the identity interpretation on *U*) and $\mathcal{J} \circ \mathcal{I}$.

- interpretations *I* and *J* with *U* ⊴*^I V*, and *V* ⊴*^J U* and
- a binary *U*-formula *F* such that *F* is, *U*-verifiably, an isomorphism between id_{U} (the identity interpretation on *U*) and $\mathcal{J} \circ \mathcal{I}$.
- a binary *V*-formula *G* such that *G* is, *V*-verifiably, an isomorphism between id_V (the identity interpretation on V) and $\mathcal{I} \circ \mathcal{J}$.

- interpretations *I* and *J* with *U* ⊴*^I V*, and *V* ⊴*^J U* and
- a binary *U*-formula *F* such that *F* is, *U*-verifiably, an isomorphism between id_{U} (the identity interpretation on *U*) and $\mathcal{J} \circ \mathcal{I}$.
- a binary *V*-formula *G* such that *G* is, *V*-verifiably, an isomorphism between id_V (the identity interpretation on V) and $\mathcal{I} \circ \mathcal{J}$.

Model theoretic picture.

 $+$ Let *U* := $\forall x P(x)$, *V* := $\forall x \neg P(x)$. Then *U* and *V* are biinterpretable. ("The stupid example").

4 D.K.

 QQQ

∍

- $+$ Let *U* := $\forall x P(x)$, *V* := $\forall x \neg P(x)$. Then *U* and *V* are biinterpretable. ("The stupid example").
- $+$ PA is biinterpretable with ZF_{fin} + Every set is contained in a transitive set.

- $+$ Let $U := \forall x P(x)$, $V := \forall x \neg P(x)$. Then U and V are biinterpretable. ("The stupid example").
- $+$ PA is biinterpretable with ZF_{fin} + Every set is contained in a transitive set.
- $+$ CT is biinterpretable with ACA $+$ "Every set is arithmetically definable".

- $+$ Let $U := \forall x P(x)$, $V := \forall x \neg P(x)$. Then *U* and *V* are biinterpretable. ("The stupid example").
- $+$ PA is biinterpretable with ZF_{fin} + Every set is contained in a transitive set.
- $+$ CT is biinterpretable with ACA $+$ "Every set is arithmetically definable".
- + Z² + Π¹ *[∞] [−]* AC and ZF *[−]* Powerset ⁺ *[∀]^x* (*|x| ≤ ℵ*⁰) are biinterpretable.

 QQ
- $+$ Let $U := \forall x P(x)$, $V := \forall x \neg P(x)$. Then U and V are biinterpretable. ("The stupid example").
- $+$ PA is biinterpretable with ZF_{fin} + Every set is contained in a transitive set.
- $+$ CT is biinterpretable with ACA $+$ "Every set is arithmetically definable".
- + Z² + Π¹ *[∞] [−]* AC and ZF *[−]* Powerset ⁺ *[∀]^x* (*|x| ≤ ℵ*⁰) are biinterpretable.
- CT is **not** biinterpretable with ACA.

 QQ

- $+$ Let $U := \forall x P(x)$, $V := \forall x \neg P(x)$. Then U and V are biinterpretable. ("The stupid example").
- $+$ PA is biinterpretable with ZF_{fin} + Every set is contained in a transitive set.
- $+$ CT is biinterpretable with ACA $+$ "Every set is arithmetically definable".
- + Z² + Π¹ *[∞] [−]* AC and ZF *[−]* Powerset ⁺ *[∀]^x* (*|x| ≤ ℵ*⁰) are biinterpretable.
- CT is **not** biinterpretable with ACA.
- PA is **not** biinterpretable with ZF*fin*.

 QQQ

- $+$ Let $U := \forall x P(x)$, $V := \forall x \neg P(x)$. Then U and V are biinterpretable. ("The stupid example").
- $+$ PA is biinterpretable with ZF_{fin} + Every set is contained in a transitive set.
- $+$ CT is biinterpretable with ACA $+$ "Every set is arithmetically definable".
- + Z² + Π¹ *[∞] [−]* AC and ZF *[−]* Powerset ⁺ *[∀]^x* (*|x| ≤ ℵ*⁰) are biinterpretable.
- CT is **not** biinterpretable with ACA.
- PA is **not** biinterpretable with ZF*fin*.
- $-$ ZF is **not** biinterpretable with ZF $+$ V= L.

 QQQ

If U and V are sequential theories which are biinterpretable through $=$ -preserving interpretations, then they have a common definitional extension (Friedmann-Visser Theorem).

- **If** U and V are sequential theories which are biinterpretable through $=$ -preserving interpretations, then they have a common definitional extension (Friedmann-Visser Theorem).
- **If U and V are biinterpretable and one of them is finite, then both are** finite.

- **If** U and V are sequential theories which are biinterpretable through $=$ -preserving interpretations, then they have a common definitional extension (Friedmann-Visser Theorem).
- **If U and V are biinterpretable and one of them is finite, then both are** finite.
- \bullet If M and N are biinterpretable, their automorphism groups are isomorphic.

[Day 1: Categoricity of PA](#page-1-0)

[Tightness](#page-42-0)

Mateusz Łełyk (WFUW) [Categoricity for FO theories](#page-0-0) Ghent, Wormshop 01.09.2024 12/22

医毛囊 医牙骨下的

← ロ → → ← 何 →

 298

Þ

A theory *U* is tight iff for all V_1 , V_2 – (deductively closed) extensions of *U* in \mathcal{L}_U

$$
V_1 \simeq V_2 \Longrightarrow V_1 = V_2.
$$

4 D F

A theory *U* is tight iff for all V_1 , V_2 – (deductively closed) extensions of *U* in \mathcal{L}_U

$$
V_1 \simeq V_2 \Longrightarrow V_1 = V_2.
$$

 $+$ Trivially, every complete theory is tight.

4 D F

A theory *U* is tight iff for all V_1 , V_2 – (deductively closed) extensions of *U* in \mathcal{L}_U

$$
V_1 \simeq V_2 \Longrightarrow V_1 = V_2.
$$

 $+$ Trivially, every complete theory is tight.

– PA(*P*) is not tight.

4 D F

 QQ

A theory U is tight iff for all V_1 , V_2 – (deductively closed) extensions of U in \mathcal{L}_U

$$
V_1 \simeq V_2 \Longrightarrow V_1 = V_2.
$$

 $+$ Trivially, every complete theory is tight.

– PA(*P*) is not tight. Recall the stupid example.

A theory U is tight iff for all V_1 , V_2 – (deductively closed) extensions of U in \mathcal{L}_U

$$
V_1 \simeq V_2 \Longrightarrow V_1 = V_2.
$$

 $+$ Trivially, every complete theory is tight.

– PA(*P*) is not tight. Recall the stupid example.

Definition

A theory *U* is minimalist iff for every $M \models U$ and every $M \trianglelefteq N \models U$ there is **exactly one** \mathcal{M} -definable embedding $\mathcal{M} \hookrightarrow \mathcal{N}$.

 QQQ

イロト イ母ト イヨト イヨト

A theory U is tight iff for all V_1 , V_2 – (deductively closed) extensions of U in \mathcal{L}_U

$$
V_1 \simeq V_2 \Longrightarrow V_1 = V_2.
$$

 $+$ Trivially, every complete theory is tight.

– PA(*P*) is not tight. Recall the stupid example.

Definition

A theory *U* is minimalist iff for every $\mathcal{M} \models U$ and every $\mathcal{M} \triangleleft \mathcal{N} \models U$ there is **exactly one** \mathcal{M} -definable embedding $\mathcal{M} \hookrightarrow \mathcal{N}$.

Proposition

Every minimalist theory is tight.

イロト イ押ト イヨト イヨト

 QQQ

PA *is tight.*

4 0 8

× \rightarrow \prec 298

PA *is tight.*

Proof.

Show that PA is minimalist.

Mateusz Łełyk (WFUW) [Categoricity for FO theories](#page-0-0) Ghent, Wormshop 01.09.2024 14/22

イロト イ押ト イヨト イヨト

 299

PA *is tight.*

Proof.

Show that PA is minimalist. Given an M and $N \models$ PA such that $M \triangleleft N$, show that

 $M \models$ "For every *x* there is the *x*-th *N*-successor of 0_M ."

 QQ

PA *is tight.*

Proof.

Show that PA is minimalist. Given an M and $\mathcal{N} \models$ PA such that $M \triangleleft N$, show that

 $M \models$ "For every *x* there is the *x*-th *N*-successor of 0_M ."

This gives rise to the unique **definable** embedding of *M* into *N* .

Restricted fragments of PA

Let PA*ⁿ* denote the set of Σ*n*-consequences of PA.

4 D F

Theorem (Enayat)

For every n, PA*ⁿ is not tight.*

4 D F

 QQ

Theorem (Enayat)

For every n, PA*ⁿ is not tight.*

Recall the canonical models in which PA *fails*:

Theorem (Enayat)

For every n, PA*ⁿ is not tight.*

Recall the canonical models in which PA *fails*: suppose *M |*= PA and set

$$
\mathcal{K}^n(\mathcal{M}) := \{ a \in M : \exists \phi(x) \in \Sigma_n \ \mathcal{M} \models \phi(a) \land \exists! x \phi(x) \}.
$$

It's fairly easy to check that

Theorem (Enayat)

For every n, PA*ⁿ is not tight.*

Recall the canonical models in which PA *fails*: suppose *M |*= PA and set

$$
\mathcal{K}^n(\mathcal{M}) := \{ a \in M : \exists \phi(x) \in \Sigma_n \ \mathcal{M} \models \phi(a) \land \exists! x \phi(x) \}.
$$

It's fairly easy to check that

$$
\bullet \ \textit{K}^n(\mathcal{M}) \subseteq \mathcal{M}
$$

Theorem (Enayat)

For every n, PA*ⁿ is not tight.*

Recall the canonical models in which PA *fails*: suppose $M \models PA$ and set

$$
\mathcal{K}^n(\mathcal{M}) := \{ a \in M : \exists \phi(x) \in \Sigma_n \ \mathcal{M} \models \phi(a) \land \exists! x \phi(x) \}.
$$

It's fairly easy to check that

 $K^n(\mathcal{M}) \subseteq \mathcal{M}$ and moreover

Theorem (Enayat)

For every n, PA*ⁿ is not tight.*

Recall the canonical models in which PA *fails*: suppose $M \models PA$ and set

$$
\mathcal{K}^n(\mathcal{M}) := \{ a \in M : \exists \phi(x) \in \Sigma_n \ \mathcal{M} \models \phi(a) \land \exists! x \phi(x) \}.
$$

It's fairly easy to check that

- $K^n(\mathcal{M}) \subseteq \mathcal{M}$ and moreover
- $(TLDR: Kⁿ(M) \preceq_{\Sigma_n} M)$

Theorem (Enayat)

For every n, PA*ⁿ is not tight.*

Recall the canonical models in which PA *fails*: suppose $M \models PA$ and set

$$
\mathcal{K}^n(\mathcal{M}) := \{ a \in M : \exists \phi(x) \in \Sigma_n \ \mathcal{M} \models \phi(a) \land \exists! x \phi(x) \}.
$$

It's fairly easy to check that

- $K^n(\mathcal{M}) \subseteq \mathcal{M}$ and moreover
- $(\textsf{TLDR: } K^n(\mathcal{M}) \preceq_{\Sigma_n} \mathcal{M})$ for every $\psi(x) \in \Sigma_n$ and every $a \in K^n(\mathcal{M})$

$$
\mathcal{M} \models \psi(a) \Rightarrow \mathcal{K}^n(\mathcal{M}) \models \psi(a).
$$

Theorem (Enayat)

For every n, PA*ⁿ is not tight.*

Recall the canonical models in which PA *fails*: suppose $M \models PA$ and set

$$
\mathcal{K}^n(\mathcal{M}) := \{ a \in M : \exists \phi(x) \in \Sigma_n \ \mathcal{M} \models \phi(a) \land \exists! x \phi(x) \}.
$$

It's fairly easy to check that

- $K^n(\mathcal{M}) \subseteq \mathcal{M}$ and moreover
- $(\textsf{TLDR: } K^n(\mathcal{M}) \preceq_{\Sigma_n} \mathcal{M})$ for every $\psi(x) \in \Sigma_n$ and every $a \in K^n(\mathcal{M})$

$$
\mathcal{M} \models \psi(a) \Rightarrow \mathcal{K}^n(\mathcal{M}) \models \psi(a).
$$

In particular $K^n(\mathcal{M}) \models PA_n$.

 QQQ

Recall that there are arithmetical formulae $Sat_n(x, y)$ such that for each Σ*ⁿ* formula *φ*(*x*)

$$
I\Sigma_1 \vdash \forall y \big(\mathsf{Sat}_n(\ulcorner \phi(x) \urcorner, y) \equiv \phi(y)\big).
$$

4 D F

Recall that there are arithmetical formulae Sat*n*(*x, y*) such that for each Σ*ⁿ* formula *φ*(*x*)

$$
I\Sigma_1 \vdash \forall y\big(\mathsf{Sat}_n(\ulcorner\phi(x)\urcorner,y)\equiv\phi(y)\big).
$$

Observe that for every $x \in K^n(\mathcal{M})$

 $K^{n}(\mathcal{M}) \models$ "*x* is below the least Σ_{n} definition of something" \iff $x \in \mathbb{N}$.

 QQ

Recall that there are arithmetical formulae $Sat_n(x, y)$ such that for each Σ*ⁿ* formula *φ*(*x*)

$$
I\Sigma_1 \vdash \forall y\big(\mathsf{Sat}_n(\ulcorner\phi(x)\urcorner,y)\equiv\phi(y)\big).
$$

Observe that for every $x \in K^n(\mathcal{M})$

 $K^{n}(\mathcal{M}) \models$ "*x* is below the least Σ_{n} definition of something" \iff $x \in \mathbb{N}$. Hence $\mathbb{N} \leq K^n(\mathcal{M})$.

 QQ

1 Choose M to be a model of PA obtained from the Arithmetized Completeness Theorem.

 QQQ

4 0 8

- ¹ Choose *M* to be a model of PA obtained from the Arithmetized Completeness Theorem.
- ² Observe that not only *M*, but also a satisfaction predicate for *M* is arithmetically definable.

4 D F

- **1** Choose M to be a model of PA obtained from the Arithmetized Completeness Theorem.
- ² Observe that not only *M*, but also a satisfaction predicate for *M* is arithmetically definable.
- **3** Copy the definition of $K^n(\mathcal{M})$.

• $\mathcal{J} \circ \mathcal{I} \sim id_{\mathbb{N}}$: map *n* to the *n*-th element of $\mathcal{I} \circ \mathcal{J}$.

化重新润滑脂

4 ロト 4 倒

 298

- $\mathcal{J} \circ \mathcal{I} \sim id_N$: map *n* to the *n*-th element of $\mathcal{I} \circ \mathcal{J}$.
- $\mathcal{I} \circ \mathcal{J} \sim \mathsf{id}_{\mathcal{K}^n(\mathcal{M})}$:

不自下

 298

- $\mathcal{J} \circ \mathcal{I} \sim id_{\mathbb{N}}$: map *n* to the *n*-th element of $\mathcal{I} \circ \mathcal{J}$.
- $\mathcal{I} \circ \mathcal{J} \sim \mathsf{id}_{\mathcal{K}^{\mathsf{n}}(\mathcal{M})}$: \blacksquare given *x* ∈ *K*ⁿ(\mathcal{M}) find its least $\mathsf{\Sigma}^{}_{n}$ -definition $\phi_{\mathsf{x}} \in \mathbb{N}$.

4 D F

- $\mathcal{J} \circ \mathcal{I} \sim$ id_N: map *n* to the *n*-th element of $\mathcal{I} \circ \mathcal{J}$.
- $\mathcal{I} \circ \mathcal{J} \sim \mathsf{id}_{\mathcal{K}^{\mathsf{n}}(\mathcal{M})}$: \blacksquare given *x* ∈ *K*ⁿ(\mathcal{M}) find its least $\mathsf{\Sigma}^{}_{n}$ -definition $\phi_{\mathsf{x}} \in \mathbb{N}$. 2 map *x* to whatever ϕ_x defines (according to N-definable satisfaction predicate) in *I ◦ J* .

 QQ
[Day 1: Categoricity of PA](#page-1-0)

[Solid theories](#page-72-0)

 \rightarrow \rightarrow \rightarrow Mateusz Łełyk (WFUW) [Categoricity for FO theories](#page-0-0) Ghent, Wormshop 01.09.2024 19/22

э

4 0 8

 298

Þ

M is a *retract* of *N* iff there are

- interpretations *I* and *J* with *M* ⊴*^I N* , and *N* ⊴*^J M[∗]*
- a binary *M*-formula *F* such that *F* is, *M*-verifiably, an isomorphism between id_M (the identity interpretation on *M*) and $\mathcal{J} \circ \mathcal{I}$.

Example

N is a retract of $(\mathbb{Z}[X]_{\geq 0}, +, \times)$.

 200

Based on a picture of Saul Steinb[er](#page-73-0)g [\(](#page-75-0)[1](#page-73-0)[96](#page-74-0)[2](#page-75-0)[\)](#page-71-0)[.](#page-72-0)

Mateusz Łełyk (WFUW) [Categoricity for FO theories](#page-0-0) Ghent, Wormshop 01.09.2024 21/22

 299

Solidity

Definition

A theory U is solid iff whenever $M, N \models U$ and

I : *M* ⊴ *N* $\mathcal{J}: \mathcal{N} \trianglelefteq \mathcal{N}^{\mathcal{J}}$

witness that M is a retract of N , then there is an N -definable isomorphism $\mathcal{N} \sim \mathcal{N}^{\mathcal{J}}$.

Remark

Minimalist =*⇒ Solidity* =*⇒ Tightness.*

Corollary

PA *is solid but for every n,* PA*ⁿ is not solid.*

 QQQ

э

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }