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Proofs

A proof is a logical story that takes a reader from a place
they know to a new, unvisited destination. [...] At times
you arrive at what looks like an impasse and need to take
a lateral step, moving sideways or even backwards to find
a way around. Sometimes you need to wait for new math-
ematical characters [...] to be created so you can continue
your journey.

M. du Sautoy, What we cannot know, 2016.



3

Rafaello Bombelli 1526–1572
▶ Indian’s in the 7th century AD developed a theory of negative

numbers.
▶ Negative numbers were banned in 13th century Florence.

▶ Bombelli used a number i whose nature is that
i2 = −1.

▶ Descartes wrote about such numbers in his La Géométrie
(1637) in which he coined the term imaginary and meant it to
be derogatory (in the sense of ficticious).

Au reste tant les vrayes racines que les fausses ne sont pas
tousjours reelles; mais quelquefois seulement imaginaires;
c’est a dire qu’on peut bien tousjours en imaginer autant
que jay dit en chasque Equation; mais qu’il n’y a quelque-
fois aucune quantité, qui corresponde a celles qu’on imag-
ine [...]
Moreover, the true roots as well as the false [roots] are
not always real; but sometimes only imaginary [quantities];
that is to say, one can always imagine as many of them in
each equation as I said; but there is sometimes no quantity
that corresponds to what one imagines [..]
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Leibniz on infinitesimals

Leibniz’s own view, as published in 1689 and as repeated
and elaborated subsequently in a number of letters, may
be summarized as follows. While approving of the
introduction of infinitely small and infinitely
large quantities, Leibniz did not consider them
as real, like the ordinary ‘real’ numbers, but
thought of them as ideal or ficticious, rather
like the imaginary numbers. However, by virtue of
a general principle of continuity, these ideal numbers were
supposed to be governed by the same laws as the ordinary
numbers.

A. Robinson, Metaphysics of the calculus (1967)
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Hilbert: The method of ideal elements

▶ Solve a mathematical problem regarding a specific
mathematical structure by adding new ideal elements to the
structure.
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Indispensable condition

▶ There is just one condition, albeit an absolutely necessary one,
connected with the method of ideal elements. That condition
is a proof of consistency, for the extension of a domain by
the addition of ideal elements is legitimate only if the
extension does not cause contradictions to appear in the old,
narrower domain, or, in other words, only if the relations that
obtain among the old structures when the ideal structures are
deleted are always valid in the old domain. (Hilbert 1925)

▶ Another reading of Hilberts Programme:

Elimination of ideal elements.
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How much is needed?

▶ People say that ZFC is the gold standard.

▶ ,,It is true that in the mathematics of today the higher levels
of this hierarchy [described by ZFC] are practically never used.
It is safe to say that 99.9% of present-day mathematics is
contained in the first three levels of this hierarchy.” Gödel
(1951)
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Minimalism

▶ Hermann Weyl, 1918 ,,Das Kontinuum”.

▶ D. Hilbert, P. Bernays 1939: Fragments of Z2 suffice.

▶ G. Takeuti, S. Feferman 1970–1995: Strength of PA suffices.

▶ Reverse Math: H. Friedman, S. Simpson, ... 1977–now.
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G. Takeuti: A Conservative Extension of PA (1978)

We use higher type language. The use of
higher type language is very convenient since
it is the natural language for analysis and we
can take all the definitions in analysis as they
are without any change.
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Finite Types

Definition of Finite Types: 0 is a finite type. If τ1, . . . , τn are finite
types, then

τ = [τ1, . . . , τn]

is a finite type.

Definition An arithmetical formula is one that does not have
higher type (> 0) quantifiers.

If A(α1, . . . , αn) is an arithmetical formula and α1, . . . , αn are of
type τ1, . . . , τn, then

{φ1, . . . , φn}A(φ1, . . . , φn)

is an abstract of type [τ1, . . . , τn].

If α is a free variable of type [τ1, . . . , τn] and V1, . . . ,Vn are
abstracts of type τ1, . . . , τn resp., then α[V1, . . . ,Vn] is a formula.
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Quantifier Rules and Comprehension

F (V ), Γ ⇒ ∆
∀ left∀φF (φ), Γ ⇒ ∆

Γ ⇒ ∆,F (α)
∀ right

Γ ⇒ ∆, ∀φF (φ)

F (α), Γ ⇒ ∆
∃ left∃φF (φ), Γ ⇒ ∆

Γ ⇒ ∆,F (V )
∃ right

Γ ⇒ ∆, ∃φF (φ)

α eigenvariable, V abstract (which is always arithmetic)

∀φ (φ[0] ∧ ∀n(φ[n] → φ[n + 1]) → ∀nφ[n])

There are also the standard axioms for the naturals arithmetic and
for the rational numbers as a field as well as an axiom relating N
and Q.
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What’s the scope of Takeuti’s theory FA?

▶ FA is conservative over PA. A cut elimination argument.

▶ The reals are introduced as Dedekind cuts of rationals.

▶ In FA, Takeuti develops real analysis, i.e., continuous
functions, infinite series, differentiation, integrations, and also
complex analysis up to what one does in a first course on
complex analysis. Definition of Riemann’s ζ-function via
analytic continuation.

▶ What’s missing? The Riemann mapping theorem, more
general topological considerations, and the theory of Riemann
surfaces seem to pose problems.
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‘Beautiful’ theorem

Theorem: (Hadamard, de La Vallée Poussin 1896)

Prime number theorem

lim
x→∞

π(x)
x

ln(x)

= 1

where π(x) = number of prime numbers ≤ x.

Atle Selberg and Paul Erdös (1949) “elementary proof”



14

Mathematics in Explicit Mathematics

▶ S. Feferman: A language and axioms for explicit mathematics,
1975

▶ S. Feferman: Theories of finite type related to mathematical
practice, 1977

▶ S. Feferman: Constructive theories of functions and classes,
1979

▶ S. Feferman: A theory of variable types, VT aka VFT , 1985

In VFT, Feferman develops 19th c. analysis and much of 20th c.
analysis (without the coding of RM), concluding with the spectral
theory for compact self-adjoint operators on a separable Hilbert
space.

Theorem. VFT is conservative over PA.
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Mathematical Conceptualism à la Weaver

Nick Weaver proposed a semi-intuitionistic theory CM of
third-order arithmetic for axiomatizing what he calls mathematical
conceptualism.

The philosophical approach we adopt, mathematical con-
ceptualism, is a refinement of the predicativist philosophy
of Poincaré and Russell. The basic idea is that we ac-
cept as legitimate only those structures that can be con-
structed, but we allow constructions of transfinite length.
What makes this “conceptual” is that we are concerned
not only with those constructions that we can actually
physically carry out, but more broadly with all those that
are conceivable (perhaps supposing our universe had dif-
ferent properties than it does).

N. Weaver, Axiomatizing mathematical conceptualism in third
order arithmetic. arXiv:0905.1675v1, 31 pages, 2009.
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The system CM

1. CM has
▶ first order variables n,m, k , . . . (thought of as ranging over N)
▶ second order variables X ,Y ,Z , . . . (thought of as ranging over

sets of naturals)
▶ third order variables X,Y,Z, . . . (thought of as ranging over

sets of sets of naturals)
▶ Axioms

1.1 Number-theoretic axioms
1.2 Law of excluded middle for formulas with no second or third

order quantifiers.
1.3 Induction on naturals for all formulas.
1.4 Dependent choice at the second order level:

If ∀n∀X∃Y ψ(n,X ,Y ) then
∀X∃Z [Z(0) = X ∧ ∀nψ(n,Z(n),Z(n+1))].

1.5 Comprehension:
∀n(φ(n) ∨ ¬φ(n)) → ∃X∀n [n ∈ X ↔ φ(n)]
∀X (ϑ(X ) ∨ ¬ϑ(X )) → ∃Y∀X [X ∈ Y ↔ ϑ(X )]
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Borel, Baire, Lebesgues against the Axiom of Choice 1905

Borel: It seems to me that the objection against it is also
valid for every reasoning where one assumes an arbitrary
choice made an uncountable number of times, for such
reasoning does not belong in mathematics.



18

Developing mathematics in CM

It’s actually quite easy.

1. The reals are a third order object, inhabited by Dedekind cuts
of rationals.

2. A topological space is a set X together with a family of
subsets T of X such that (i) ∅ and X belong to T; (ii) the
union of any sequence of sets that belong to T belongs to T;
and (iii) the intersection of any finitely many sets that belong
to T belongs to T.

3. Weaver shows that lot of topology, measure theory and
functional analysis can be developed in CM. Core
mathematics can be straightforwardly implemented in CM.

What’s the strength of CM?

Theorem (Shuwei Wang) CM has a realizability interpretation in
Σ1
1-DC, so its proof-theoretic ordinal is just φε00.
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Fundamental/Rudimentary Functions
For x an ordered pair (OP) ⟨a, b⟩ and y , z sets, define 1st(x) = a
and 2nd(x) = b and

y“{z} := {u | ⟨z , u⟩ ∈ y}.
The fundamental functions are as follows:

(Fp) Fp(x , y) := {x , y},
(F∩) F∩(x , y) := x ∩

⋂
y

(F∪) F∪(x , y) :=
⋃

x ,

(F\) F\(x , y) := x \ y ,
(F×) F×(x , y) := x × y ,

(F→) F→(x , y) := x ∩ {z | OP(y) ∧ (z ∈ 1st(y) → z ∈ 2nd(y))},
(F∀) F∀(x , y) := {x“{z} | z ∈ y} = {{u | ⟨z , u⟩ ∈ x} | z ∈ y},
(Fd) Fd(x , y) := dom(x) = {1st(z) | z ∈ x ∧ z is an ordered pair},
(Fr) Fr(x , y) := ran(x) = {2nd(z) | z ∈ x ∧ z is an ordered pair},

(F123) F123(x , y) := {⟨u, v ,w⟩ | ⟨u, v⟩ ∈ x ∧ w ∈ y},
(F132) F132(x , y) := {⟨u,w , v⟩ | ⟨u, v⟩ ∈ x ∧ w ∈ y},
(F=) F=(x , y) := {⟨v , u⟩ ∈ y × x | u = v},
(F∈) F∈(x , y) := {⟨v , u⟩ ∈ y × x | u ∈ v}.
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Weaver, Analysis in J2
Definition. The rudimentary closure of a set x is the smallest set
y such that x ⊆ y , x ∈ y , and y is closed under application of the
fundamental functions.

Definition. J0 = ∅; J1 is the rudimentary closure of J0; J2 is the
rudimentary closure of J1.

Definition. An ι-set is an element of J2.
An ι-class is a definable subset of J2 whose intersection with every
ι-set is an ι-set.
Weaver then develops mathematics in J2, where the reals are an
ι-class. He shows that quite a chunk of mathematics, including
central topics of topology, measure theory, and Banach spaces can
be accounted for in J2.

J2 can be turned into a classical set theory, say TJ2 , so that
mathematics can be carried out formally in TJ2 .

Theorem (R., Wang) The theory TJ2 has proof-theoretic
strength εε0 (same as ACA).
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Fermat’s Last Theorem

For n > 2, the equation

xn + yn = zn

has no non-trivial solution in N (or Q).

Proved by Andrew Wiles in 1995. He proved enough of the
Taniyama-Shimura conjecture to deduce FLT .

The proof of FLT builds on a massive amount of abstract
mathematics, developed by Grothendieck and others.
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Large workspaces

Given one space X , Grothendieck took an array of categories of
related spaces and sheaves on them as one simply and explicitly
organized workspace guiding proofs about X .

He would “approach these categories from a ‘näıve’ point of view,
as if we were dealing with sets” [Grothendieck & Dieudonne, 1971].
Grothendieck aimed to preserve what he liked calling the

childish ... incorrigible näıveté

of his geometry.

“... to avoid certain logical difficulties, we will accept the notion of
a Universe, which is a set ‘large enough’ that the habitual
operations of set theory do not go outside of it [Grothendieck, ‘71]

There are means to show the great cohomological proofs like
Deligne [‘74], or Faltings [‘83], or Wiles [‘95] never need to go
beyond ZFC.
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Frameworks for Constructive Mathematics (in the 1970s)

▶ S. Feferman, Explicit Mathematics

▶ J. Myhill, Constructive Set Theory, CST.

▶ P. Martin-Löf, Intuitionistic Type Theory, MLTT.

▶ P. Aczel, Constructive Zermelo-Fraenkel Set Theory, CZF.

CZF is a simplification and extension of Myhill’s CST,
induced by MLTT.
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Constructive Zermelo-Fraenkel set theory, CZF

▶ Extensionality

▶ Pairing, Union, Infinity

▶ Bounded Separation

▶ Subset Collection

For all sets A,B there exists a “sufficiently large” set of
multi-valued functions from A to B.

▶ Strong Collection

(∀x ∈ a) ∃y φ(x , y) →
∃b [ (∀x ∈ a) (∃y ∈ b) φ(x , y) ∧ (∀y ∈ b) (∃x ∈ a) φ(x , y) ]

▶ Set Induction scheme

http://www1.maths.leeds.ac.uk/ rathjen/book.pdf
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Principles of Omniscience

Limited Principle of Omniscience (LPO):

∀f ∈ 2N [∃n f (n) = 1 ∨ ∀n f (n) = 0].

Lesser Limited Principle of Omniscience (LLPO):

∀f ∈ 2N
(
∀n,m[f (n) = f (m) = 1 → n = m]

→ [∀n f (2n) = 0 ∨ ∀n f (2n + 1) = 0]
)
.
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Dummett “Thought and Reality” 2006

▶ “If there are no gaps in reality, that is no questions that have
no answers, then God’s logic will be classical.

Those many people who favour classical over
intuitionistic logic are therefore guilty of the
presumption of reasoning as if they were God.”

Bertrand Russell: “.... it’s just a medical condition ...”



27

Bishop’s critique of Brouwer

[t]he movement Brouwer founded has long been dead,
killed partly by compromises of Brouwer’s disciples with the
viewpoint of idealism, partly by extraneous peculiarities of
Brouwer’s system which made it vague and even ridiculous
to practising mathematicians, but chiefly by the failure of
Brouwer and his followers to convince the mathematical
public that abandonment of the idealistic viewpoint would
not sterilize or cripple the development of mathematics.
(1967)
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CM and Constructive Zermelo-Fraenkel set theory (CZF)

It is shown that it is unexpectedly easy to formalize a great deal of
modern functional analysis in CM.

The interesting connection between CZF+ LPO+ RDC and CM
is the following.

Theorem. CM can be interpreted in CZF+ LPO+ RDC.

Theorem (R. 2013) CZF+ LPO+ RDC and CZF have the same
proof-theoretic strength.
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Paul Lorenzen: Konstruktive Begründung der Mathematik
(1950)

Obwohl es gerechtfertigt wäre, axiomatische Mengen-
lehren, für die kein konstruktives Modell vorhanden ist, ein-
fach als mißglückte Versuche in Zukunft beiseite zu lassen,
besteht aber auch die andere Möglichkeit, zu untersuchen,
ob sich solche Axiomatisierungen – nachdem sie einmal da
sind und wir uns dran gewöhnt haben – nicht doch auf
irgend einem Umweg als kalkulatorisch zweckmässige Fik-
tionen für die konstruktive Mathematik verwenden lassen.
[...]
Im Gegensatz zu den intuitionistischen Versuchen darf
dabei jetzt – nach einwandfreier Begründung der Logik –
das tertium non datur stets benutzt werden. Die so unbe-
queme Beschränkung auf ,,entscheidbare” Eigenschaften,
,,berechenbare reelle Zahlen” usw. ist nicht mehr erforder-
lich.
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CZF with large sets

Laura Crosilla, R.: Inaccessible set axioms may have little
consistency strength Annals of Pure and Applied Logic (2002).
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Monotone inductive definitions in T0

▶ In Explicit Mathematics, T0, one can easily formalize an
axiom, MID, asserting that every monotone operation on
classifications has a least fixed point.

What is the strength of T0 + MID? [...] I have tried,
but did not succeed, to extend my interpretation of T0 in
Σ1
2-AC + BI to include the statement MID. The theory

T0 +MID includes all constructive formulations of itera-
tion of monotone inductive definitions of which I am aware,
while T0 (in its IG axiom) is based squarely on the gen-
eral iteration of accessibility inductive definitions. Thus it
would be of great interest for the present subject to settle
the relationship between these theories. (p. 88)

S. Feferman, 1982, Monotone inductive definitions.
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Pushing the envelope
Theorem 1 (Glaß, R., Schlüter) For all Σ1

2 sentences φ:

KPir + ∃γ (Lγ ≺1 L) ⊢ φ ⇔ Σ1
2-AC0 +Π1

2-CA
− ⊢ φ

⇔ T0↾+MID

KPiw + ∃γ (Lγ ≺1 L) ⊢ φ ⇔ Σ1
2-AC + Π1

2-CA
− ⊢ φ

⇔ T0↾+ INDN +MID

Theorem 2 (R.) The following have the same proof-theoretic
strength:
1. Π1

2-CA0 and T0 ↾ +UMIDN.

2. Π1
2-CA and T0 ↾ +INDN + UMIDN.

Theorem 3 (Tupailo) Π1
2-CA0 and Ti

0 ↾ +UMIDN have the
same proof-theoretic strength.

Theorem 4 (Tupailo, R.) Π1
2-CA and Ti

0 ↾ +INDN + UMIDN
have the same proof-theoretic strength.
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▶ S. Takahashi, 1989, Monotone inductive definitions in a
constructive theory of functions and classes.

▶ R., 1996, Monotone inductive definitions in explicit
mathematics.

▶ T. Glaß, M. Rathjen, A. Schlüter, 1997, The strength of
monotone inductive definitions in explicit mathematics.

▶ R., 1998, Explicit Mathematics with the monotone fixed point
principle.

▶ R., 1999, Explicit Mathematics with the monotone fixed point
principle. II: Models.

▶ R., 2002, Explicit Mathematics with monotone inductive
definitions: a survey.

▶ S. Tupailo, 2004, On the intuitionistic strength of monotone
inductive definitions.

▶ R., S. Tupailo, 2004, On the strength of UMID in
intuitionistic explicit mathematics.


