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Part of this presentation is based on joint work with Carlo Nicolai (KCL).
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The study of axiomatic theories of truth can be simplified in the following
steps:

• Adding a unary predicate for truth to an expressive enough arithmetical
base theory (EA, PA).

• Formulating axioms or schemata for the predicate.
• Establishing the amount of new arithmetical theorems provable thanks
to truth (i.e., computing the theory’s ordinal).
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• Axiomatic theories of truth now have many applications in philosophical
logic.

• Originally they were introduced as a foundational tool in Feferman
project [Feferman, 1991].

• They had the role of defining the reflective closure of an axiomatic
system.

• The reflective closure of a system is obtained by transfinitely iterating
the addition of reflection principles to the system. The truth predicate
makes it possible to dispense of this transfinite process.
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• The iteration process reaches a fixed-point at the ordinal Γ0.
• The corresponding theory of truth is the schematic extension of KF.
• This result fits neatly in Feferman’s foundational programme since he
understood this ordinal as the limit of predicativity.

More or less recent works challenge that Γ0 is the limit of predicative
mathematics.

[Weaver, 2005] defines a way to predicatively define ordinals up to the Small
Veblen Ordinal and suggests that the strategy can be extended to bigger
ones.
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For these reasons I would like to:

• Find extensions of KF that can reach ”impredicative” strength.
• Compare the foundational role of these theories with the one employed
by Feferman.

• Outline independent justifications for the additional principles added to
KF (if there are any).
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KF

The theory is an axiomatization of Kripkean fixed-point semantics based on
Strong Kleene logic. The language LT of the theory is obtained by ext. LPA
with a unary predicate T. Induction is then extended to LT.

Axiomatically the theory describes a type-free compositional and iterative
notion of truth, for example:

∀x∀y(SentT(x ∧ y) → (T(x ∧ y) ↔ Tx ∧ Ty)

∀v∀x(SentT(∀vx) → (T(∀vx) ↔ ∀tT(x(t/v)))

∀t(T(Tt) ↔ Tt)
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Extending the theory

• An extension is already needed by Feferman to obtain a theory with
ordinal Γ0. He adds a principle closely related to the Bar Rule.

• This suggests a generalisation of the role that truth plays:

Truth can play a foundational role because it is a logico-mathematical tool
that can simulate second-order talk (s.o. quantification, s.o. variables, ...) in a
first-order setting.
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Thus, we look for logical notions that yield ”impredicative” strength and
employ s.o. talk.

A candidate is a statement that describes the smallest fixed point of an
arithmetical operator.

The truth-theoretic version of the principle is Generalised Induction (GI) as
introduced by [Cantini, 1989]:

∀x(A(x,B) → B(x)) → ∀x(T⌜IA(ẋ)⌝ → B(x))

I want to argue that there are deeper motivations to adopt this principle for
KF, but I will elaborate at the end.
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The Lower Bound

Let LID be the language LPA expanded with ∈ and set constants IA for any
arithmetical formula A(x, y).

The theory ID1 is obtained from PA by extending induction to LID and the two
following principles:

∀x(A(x, IA) → x ∈ IA)
∀x(A(x,B) → B(x)) → ∀x(x ∈ IA → B(x))
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Let # be a translation from LID to LT, that preserves the arithmetical
statements, commutes with logical operations and interprets
set-membership as truth-predication:

(t ∈ IA)# = T⌜IA(t)⌝

This makes precise how truth can be a tool to simulate s.o. talk
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We can finally verify this. Easily from the definition of the translation one can
prove:

Lemma (Cantini)

KFGI ⊢ (ID1)#

But it is left to show if the theory’s proof-theoretic power exceeds this.
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The Upper Bound

The semi-formal system KFGI∞ is defined as usual for the arithmetical part
with also sequences as syntactic objects. We are drawing from
[Pohlers, 1989],[Pohlers, 2008].

Derivations are controlled by Operators (omitted for simplicity).

We rec. define
T≺ζ⌜IA(t)⌝ :=

∨
η≺ζ

A(T≺η⌜IA()⌝, t)

and
Tα⌜IA(t)⌝ := A(T≺α⌜IA()⌝, t)
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The system includes

• Rules for
∨
,
∧
, cut

• KF rules for T
• A rule for Ω:

α ∀x(A(x,T<Ω⌜IA()⌝))
CL

β
T<Ω⌜IA(t)⌝

where Ω can be interpreted as ω1 or ωCK1 . The rule is needed to have a define
Ω, since our semi-formal system cannot contain a recursive ordinal notation
system which includes a segment of length Ω.
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We define an embedding from KFGI that leaves intact truth-predications that
do not include IA.

Proposition

KFGI ⊢ Γ ⇒ KFGI∞ Ω+n
Ω·2+ω

Γ∗

From here, it usually goes like this:

KF+ n
φ ⇒ KF∞ m

ω+n
Γ⇒KF∞ 0

α<ε0
Γ ⇒⊨ Γ[Fβ , Tβ+2

α

]
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For X ⊆ On let Hα(X) be the least set of ordinals containing {0,Ω}, which is
closed under H and the collapsing function ΨH ↾ α. The collapsing function
is defined as

ΨH(α) := min{ξ|ξ /∈ Hα(∅)}

Lemma (Collapsing)

If Γ does not contain Ω-branching conjunctions,

KFGI∞ Ω+1
β

Γ ⇒ KFGI∞
Ψ(ωβ)

Ψ(ωβ)
Γ

Lemma (Quasi cut-elimination)

KFGI∞
Ψ(ωβ)

Ψ(ωβ)
Γ ⇒ KFGI∞ 0

Ψ(ωβ)
Γ
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Asymmetric Interpretation

let A be a formula of L∞, we say that ⊨ A[β, α] holds when:

• Every logical symbol is interpreted in a standard way, except T.
• Let IαΓ be the α-th stage of the m.f.p.

⊨ Tt[β, α] ⇔ tN ∈ IαΓ

⊨ ¬Tt[β, α] ⇔ tN /∈ IβΓ

⊨ Γ[β, α] := {A1[β, α], ..., An[β, α]}

The asymmetric interpretation enjoys a crucial property of persistence:

let 0 < β < β′ < γ′ < γ, then ⊨ A[β′, δ′] ⇒⊨ A[β, δ]
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Lemma
If KFGI∞ 0

α
Γ and Ω /∈ par(Γ) then for every β > 0:

⊨ Γ[β, β +Ψ(ωα))].

and by t.i. formalise this in a suitable system RT<Ψ(εΩ+1)

Lemma
RT<Ψ(εΩ+1) ⊢ ProvKFGI∞(⌜Γ⌝, 0, α) → Tβ+Ψ(ωα)

β (⌜Γ⌝)

with the lower bound, we can conclude:

|KFGI| = Ψ(εΩ+1)
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But why should we add GI and not something else, for instance, Reflection
Principles?

If we take our axiom-making process to be a definition of truth, we should
keep the same epistemic status as a definition:

It is not possible to prove something new from a definition alone that
would be unprovable without it. [Frege, 1979]
Oughtn’t we worry [...] into accepting a substantive metaphysi-
cal thesis by insisting that the thesis has the ”epistemic status”
of a definition? The disquotationalist has a one-word answer:
conservativity.[McGee, 2005]

Proposition (Cantini)

GI is semantically conservative over KF−
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Open Problems: categoricity-like features

The theory is proof-theoretically equivalent to KFµ, see [Burgess, 2014].

[Fischer et al., 2015] argue that N-categoricity is a conceptually relevant
feature for axiomatic theories of truth.

KFµ and likely KFGI do not share this feature.

• As [Enayat and Łełyk, 2024] have recently shown KFµ enjoys another
categoricity-like property that other theories of truth do not, solidity.

• Is this feature shared with KFGI?
• What is the significance of this property for theories of truth?
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Thank you!
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