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Challenging the Necessity of logic
A framework to study the Contingency of Logic

Regular modal logic semantics

▶ Necessitation: If a statement can be proved, then it is
necessarily true everywhere.

▶ Axioms and theorems of a logical system are true in every
possible world considered by that system.

▶ The traditional view of a singular logic accurately representing
all possible worlds and their behaviour has been challenged.
Could we create a new modal logical system to better reflect
this?
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Possible worlds with contingent logic

LEM holds LEM does not hold

?

▶ We focus on a first example, combining classical and
intuitionistic reasoning.
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Local reasoning

w

v {p, q}

w

v {p → q,¬p → q}

▶ w behaves classically (as in K)

▶ x ⊩ □A ⇐⇒ ∀y(xRy ⇒ y ⊩ A)
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Local reasoning

w
w⊩□p → □p

w⊩□(p → q)

w⊩□p → □q

v {p, q}

w
w⊩□q

v {p → q,¬p → q}

Local versus non-local reasoning
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Desired properties of the models

▶ Kripke frame F with a set T of formulas assigned to each
node, such that T is:
▶ Consistent, i.e. ⊥ /∈ T ;
▶ Closed under classical/intuitionistic local reasoning;
▶ □ behaves classically with respect to the frame (as in K ).
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Language

▶ Language L□ := p | ⊥ | A ∧ A | A ∨ A | A → A | □A

▶ Set Form□ of formulas in L□
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Defining local reasoning

▶ A local classical derivation D from Γ to φ (Γ, φ ⊆ Form□) is a
sequence of formulas φ1, φ2, ..., φk s.t ∀i ∈ {1, 2, ..., k}:
▶ φi ∈ Γ or
▶ φi is in the form of a Classical axiom (CPC axioms) in the

language L□ or
▶ There is j , l < i such that φj is of the form φl → φi

▶ φk = φ.

We write Γ ⊢L□
c φ.

▶ When Γ ⊢L□
c φ we say we can locally deduce (in a classical

world) φ from Γ.

▶ This reasoning does not use the rule of Necessitation or the
Distribution axiom □(A → B) → (□A → □B) present in the
classical modal logic K.
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Defining the Language and Derivations

▶ We similarly define the local intuitionistic derivations.

▶ T
c□/T

i□ is the closure of T over ⊢L□
c / ⊢L□

i .
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Mixed models

▶ A mixed model is a tuple M := ⟨W ,R, e⟩ where ⟨W ,R⟩ is a
Kripke frame and e is an extension
e : W → P(Form□)× {i , c}

(
denoted e(w) = ⟨Tw , lw ⟩

)
such that:

1. ⊥ /∈ Tw ;
2. Tw ⊢L□

lw
φ⇒ φ ∈ Tw (i.e. closure under local deduction);

3. □φ ∈ Tw ⇐⇒ ∀v(wRv ⇒ φ ∈ Tw );
4. ¬□φ ∈ Tw ⇐⇒ ∃u(wRu ∧ φ /∈ Tu).
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w2(i)

w1(c)

Tw2 = {p, q} ∪ {□φ | φ ∈ Form□}
i□

Tw1 = {¬q} ∪ {□φ | φ ∈ Tw2} ∪ {¬□ψ | ψ ∈ Form□/Tw2}
c□
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w2(i)

w1(c)

w3(c)

Tw2 = {p, q} ∪ {□φ | φ ∈ Form□}
i□

Tw1 = {¬p ∨ q} ∪ {□φ | φ ∈ Tw2 ∩ Tw3}

∪{¬□ψ | ψ ∈ Form□/Tw2 ∩ Tw3}
c□

Tw3 = {p} ∪ {□φ | φ ∈ Form□}
c□
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w1(c) w2(i)
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Concrete models

▶ Concrete Model M := ⟨F, λ,m⟩ From a Kripke frame
F = ⟨W ,R⟩ and function λ : W → {c , i}, we assign to each
w ∈ W a rooted intuitionistic Kripke model
m(w) := ⟨Uw ,≤w ,Vw ⟩
(root: w ∈ Uw ) s.t. λ(w) = c ⇒ Uw = {w}

▶ ⊩ is defined on Θ :=
⋃

w∈W
Uw

(For x ∈ Uw :)

1. x ⊩ ⊥ and x ⊩ ⊤;
2. x ⊩ p iff x ∈ Vw (p);
3. x ⊩ A ∧ B iff x ⊩ A and x ⊩ B;
4. x ⊩ A ∨ B iff x ⊩ A or x ⊩ B;
5. x ⊩ A → B iff ∀y∈ Uw (x≤y → y ⊩ A or y ⊩ B);
6. x ⊩ ¬A iff x ⊩ A → ⊥;
7. x ⊩ 2A iff ∀v∈ W (wRv → v ⊩ A).
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Concrete models

⟨W1,≤,V ⟩ ⟨W2,≤,V ⟩

⟨{w},≤,V ⟩

w

w1 w2

w3

R

R

R

P.Mayaux, I vd Giessen, J. J. Joosten Wormshop 2024 15 / 26



Introduction to the idea
Semantical construction of mixed models

Soundness and completeness
Possible new openings and further questions

Concrete models

Concrete models to mixed models

Theorem

From a concrete model M we can obtain a mixed model M′

such that
M,w ⊩ φ ⇐⇒ M′,w ⊩ φ

▶ Example of a non-concrete mixed model.
▶ F = ⟨{w},R⟩, R = ∅, lw = c ;
▶ Tw = {p ∨ q} ∪ {□φ | φ ∈ Form□}

c
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Soundness for MM

▶ We define the logic MixL := iK +2A ∨ ¬2A

Theorem

Soundness: The logic MixL is sound with respect to
the class MM of all mixed models.

▶ Results of interest:
▶ (Necessitation)M ⊨ A implies M ⊨ □A
▶ (Distributivity)M ⊨ □(A → B) → (□A → □B)
▶ (Box excluded middle)M ⊨ □A ∨ ¬□A
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Quick proof of Distributivity (k-axiom)

▶ We show □(A → B) → (□A → □B) ∈ Tw :
▶ (A □(A → B) ∈ Tw )

▶ If □A ∈ Tw , ∀y ∈ M(A,A → B ∈ Ty ⇒ B ∈ Ty ) ⇒ □B ∈
Tw ⇒ □(A → B) → (□A → □B) ∈ Tw

▶ If □A /∈ Tw , □A → ⊥ ∈ Tw , and by reductio ad absurdum,
□A → □B ∈ Tw ⇒ □(A → B) → (□A → □B) ∈ Tw

▶ ((A □(A → B) /∈ Tw ), then □(A → B) → ⊥ ∈ Tw and by
reductio ad absurdum, □(A → B) → (□A → □B) ∈ Tw
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Intuitionistic logic and Modal logic: Semantics

▶ Kripke semantics for IPC:
▶ M = (W ,≤,V ) (Monotonicity w.r.t. V )
▶ M,w ⊩ A → B iff for all v≥w : M, v ⊩ A implies M, v ⊩ B

▶ Possible world semantics for K:
▶ M = (W ,R,V )
▶ M,w ⊩ 2A iff for all v s.t. wRv : M, v ⊩ A
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Birelational semantics for iK

▶ M = (W ,≤,R,V ) (Monotonicity w.r.t. V )
▶ M,w ⊩ A → B iff for all v≥w : M, v ⊩ A implies M, v ⊩ B
▶ M,w ⊩ 2A iff for all v s.t. wRv : M, v ⊩ A

▶ Frame property (F0):

x

y z

x≤y ⇒ (yRz ⇒ xRz)
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Mixed birelational models
▶ Frame condition for □A ∨ ¬□A (F3):

x

y z

x≤y ⇒ (yRz ⇐ xRz)

▶ Mixed birelational model M = (W ,≤,R,V ):
▶ Monotonicity w.r.t. V
▶ Frame property (F0+F3):

x

y z

w

x≤y ⇒ (yRz ⇐⇒ xRz)
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Mixed birelational models

Theorem

MixL is sound and complete with respect to Mixed bire-
lational models

▶ Proof method: Henkin-style canonical model construction:
▶ Prime sets Γ:

▶ ⊥ /∈ Γ;
▶ Closed under MixL;
▶ φ ∨ ψ ∈ Γ implies φ ∈ Γ or ψ ∈ Γ.

▶ M := ⟨W ,R,≤,V ⟩
▶ W := {Γ | Γ is a prime set};
▶ Γ ≤ ∆ : ⇐⇒ Γ ⊆ ∆;
▶ ΓR∆ if and only if (□φ ∈ Γ implies φ ∈ ∆);
▶ p ∈ V (Γ) : ⇐⇒ p ∈ Γ.
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Mixed Models

MixL

Mixed Birelational Models

Concrete ModelsMixed Concrete Models
So
un
d+

C
om

pl
et
e

Complete

⊃

Sound
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⟨W0,≤⟩

⟨W1,≤⟩ ⟨W2,≤⟩

⟨W3,≤⟩

Wi = {∆ | Γi≤∆}
∀i (Γ0R∗Γi )

(...)

Γ0 counterprime of φ

(...)

(...)

R

R R

R

RR R

R
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Theorem

MixL is sound and complete with respect to concrete
models.

Corollary

MixL is sound and complete with respect to mixed mod-
els.
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Open questions

What next?

▶ Conjecture
The class CM of all concrete models gives the class of all
mixed models such that for all w ∈ M, Tw is a prime theory
(φ ∨ ψ ∈ Tw ⇒ φ ∈ Tw or ψ ∈ Tw ).

▶ Finite model property.

▶ Including 3 in the semantical definition.
▶ Can possibly include more/different logics in this framework:

▶ Incomparable logics
▶ Many valued
▶ Etc.
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