Possible worlds and the contingency of logic

Paul Mayaux

Joost J. Joosten, Iris van der Giessen

Wormshop 2024

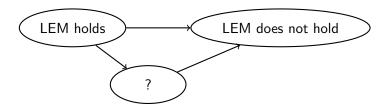
03-09-2024

Regular modal logic semantics

- Necessitation: If a statement can be proved, then it is necessarily true everywhere.
- Axioms and theorems of a logical system are true in every possible world considered by that system.
- The traditional view of a singular logic accurately representing all possible worlds and their behaviour has been challenged. Could we create a new modal logical system to better reflect this?

Challenging the Necessity of logic A framework to study the Contingency of Logic

Possible worlds with contingent logic



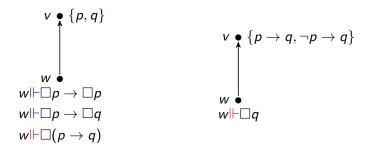
We focus on a first example, combining classical and intuitionistic reasoning.

Challenging the Necessity of logic A framework to study the Contingency of Logic

Local reasoning

Challenging the Necessity of logic A framework to study the Contingency of Logic

Local reasoning



Local versus non-local reasoning

Challenging the Necessity of logic A framework to study the Contingency of Logic

Desired properties of the models

- Kripke frame F with a set T of formulas assigned to each node, such that T is:
 - Consistent, i.e. $\perp \notin T$;
 - Closed under classical/intuitionistic local reasoning;
 - \Box behaves classically with respect to the frame (as in K).

Challenging the Necessity of logic A framework to study the Contingency of Logic

Language

► Language $\mathcal{L}_{\Box} := p \mid \bot \mid A \land A \mid A \lor A \mid A \to A \mid \Box A$

▶ Set Form_□ of formulas in $\mathcal{L}_{□}$

Defining local reasoning

- A local classical derivation D from Γ to φ (Γ, φ ⊆ Form_□) is a sequence of formulas φ₁, φ₂, ..., φ_k s.t ∀i ∈ {1, 2, ..., k}:
 - $\varphi_i \in \Gamma$ or
 - ▶ φ_i is in the form of a Classical axiom (CPC axioms) in the language \mathcal{L}_{\Box} or
 - There is j, l < i such that φ_j is of the form $\varphi_l \rightarrow \varphi_i$

$$\blacktriangleright \varphi_k = \varphi.$$

We write $\Gamma \vdash_{c}^{\mathcal{L}_{\Box}} \varphi$.

- When Γ ⊢^L_c[□] φ we say we can locally deduce (in a classical world) φ from Γ.
- This reasoning does not use the rule of Necessitation or the Distribution axiom □(A → B) → (□A → □B) present in the classical modal logic K.

Challenging the Necessity of logic A framework to study the Contingency of Logic

Defining the Language and Derivations

We similarly define the local intuitionistic derivations.
 T^c[□]/Tⁱ[□] is the closure of T over ⊢^L_c[□] / ⊢^L_i[□].

Challenging the Necessity of logic A framework to study the Contingency of Logic

Mixed models

A mixed model is a tuple M := ⟨W, R, e⟩ where ⟨W, R⟩ is a Kripke frame and e is an extension e : W → P(Form_□) × {i, c} (denoted e(w) = ⟨T_w, I_w⟩) such that:

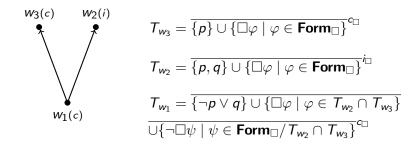
1.
$$\perp \notin T_w$$
;
2. $T_w \vdash_{l_w}^{\mathcal{L}_{\square}} \varphi \Rightarrow \varphi \in T_w$ (i.e. closure under local deduction);
3. $\Box \varphi \in T_w \iff \forall v (wRv \Rightarrow \varphi \in T_w);$
4. $\neg \Box \varphi \in T_w \iff \exists u (wRu \land \varphi \notin T_u).$

Challenging the Necessity of logic A framework to study the Contingency of Logic

$$T_{w_{2}} = \overline{\{p,q\} \cup \{\Box \varphi \mid \varphi \in \mathbf{Form}_{\Box}\}}^{i_{\Box}}$$

$$T_{w_{1}} = \overline{\{\neg q\} \cup \{\Box \varphi \mid \varphi \in T_{w_{2}}\} \cup \{\neg \Box \psi \mid \psi \in \mathbf{Form}_{\Box}/T_{w_{2}}\}}^{c_{\Box}}$$

Challenging the Necessity of logic A framework to study the Contingency of Logic



Introduction to the idea

Semantical construction of mixed models Soundness and completeness Possible new openings and further questions

Challenging the Necessity of logic A framework to study the Contingency of Logic

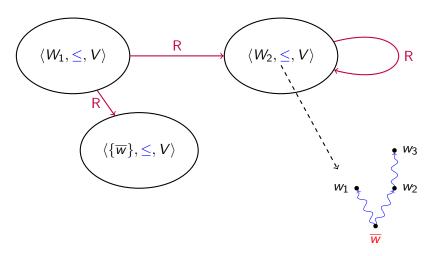
Concrete models

Concrete models

• Concrete Model $\mathcal{M} := \langle \mathbf{F}, \lambda, m \rangle$ From a Kripke frame $F = \langle W, R \rangle$ and function $\lambda : W \to \{c, i\}$, we assign to each $w \in W$ a rooted intuitionistic Kripke model $m(w) := \langle U_w, <_w, V_w \rangle$ (root: $\overline{w} \in U_w$) s.t. $\lambda(w) = c \Rightarrow U_w = \{\overline{w}\}$ ▶ \Vdash is defined on $\Theta := \bigcup U_w$ $W \in W$ (For $x \in U_w$:) 1. $x \not\Vdash \bot$ and $x \not\Vdash \top$: 2. $x \Vdash p$ iff $x \in V_w(p)$; 3. $x \Vdash A \land B$ iff $x \Vdash A$ and $x \Vdash B$: 4. $x \Vdash A \lor B$ iff $x \Vdash A$ or $x \Vdash B$: 5. $x \Vdash A \to B$ iff $\forall y \in U_w (x < y \to y \nvDash A \text{ or } y \Vdash B)$; 6. $x \Vdash \neg A$ iff $x \Vdash A \rightarrow \bot$: 7. $x \Vdash \Box A$ iff $\forall v \in W(w R v \to \overline{v} \Vdash A)$.

Concrete models

Concrete models



Concrete models

Concrete models to mixed models

Theorem

From a concrete model $\mathcal M$ we can obtain a mixed model $\mathcal M'$ such that

$$\mathcal{M}, \mathbf{w} \Vdash \varphi \iff \mathcal{M}', \mathbf{w} \Vdash \varphi$$

Example of a non-concrete mixed model.

►
$$F = \langle \{w\}, R \rangle, R = \emptyset, I_w = c;$$

► $T_w = \overline{\{p \lor q\} \cup \{\Box \varphi \mid \varphi \in \mathbf{Form}_{\Box}\}}^c$

Soundness Mixed birelational models Completeness of mixed models

Soundness for $\mathcal{M}\mathcal{M}$

• We define the logic $MixL := iK + \Box A \lor \neg \Box A$

Theorem

Soundness: The logic MixL is sound with respect to the class $\mathcal{M}\mathcal{M}$ of all mixed models.

- Results of interest:
 - (Necessitation) $M \vDash A$ implies $M \vDash \Box A$
 - (Distributivity) $M \vDash \Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$
 - (Box excluded middle) $M \vDash \Box A \lor \neg \Box A$

Soundness Mixed birelational models Completeness of mixed models

Quick proof of Distributivity (k-axiom)

reductio ad absurdum, $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B) \in T_w$

Soundness Mixed birelational models Completeness of mixed models

Intuitionistic logic and Modal logic: Semantics

Kripke semantics for IPC:

- $M = (W, \leq, V)$ (Monotonicity w.r.t. V)
- ▶ $M, w \Vdash A \rightarrow B$ iff for all $v \ge w$: $M, v \Vdash A$ implies $M, v \Vdash B$

Possible world semantics for K:

$$\blacktriangleright M = (W, \mathbb{R}, V)$$

▶ $M, w \Vdash \Box A$ iff for all v s.t. w R v: $M, v \Vdash A$

Soundness Mixed birelational models Completeness of mixed models

Birelational semantics for iK

• $M = (W, \leq, R, V)$ (Monotonicity w.r.t. V)

- ▶ $M, w \Vdash A \rightarrow B$ iff for all $v \ge w$: $M, v \Vdash A$ implies $M, v \Vdash B$
- ▶ $M, w \Vdash \Box A$ iff for all v s.t. wRv: $M, v \Vdash A$

Frame property (F0):

 $x \leq y \Rightarrow (y Rz \Rightarrow x Rz)$

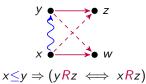
Soundness Mixed birelational models Completeness of mixed models

Mixed birelational models

Frame condition for $\Box A \lor \neg \Box A$ (F3):

$$x \leq y \Rightarrow (y Rz \Leftarrow x Rz)$$

- Mixed birelational model $M = (W, \leq, R, V)$:
 - Monotonicity w.r.t. V
 - Frame property (F0+F3):



Soundness Mixed birelational models Completeness of mixed models

Mixed birelational models

Theorem

 $\ensuremath{\mathsf{MixL}}$ is sound and complete with respect to $\ensuremath{\mathsf{Mixed}}$ birelational models

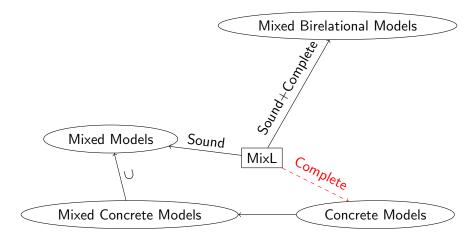
Proof method: Henkin-style canonical model construction:

- Prime sets Γ:
 - ▶ ⊥ ∉ Γ;
 - Closed under MixL;
 - $\varphi \lor \psi \in \Gamma$ implies $\varphi \in \Gamma$ or $\psi \in \Gamma$.

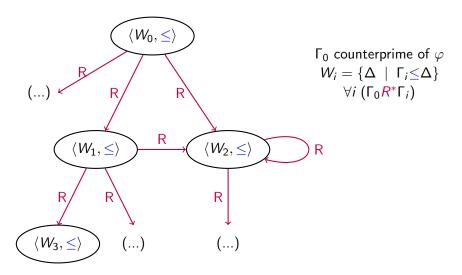
$$\blacktriangleright \mathcal{M} := \langle W, R, \leq, V \rangle$$

- $W := \{ \Gamma \mid \Gamma \text{ is a prime set} \};$
- $\blacktriangleright \ \Gamma \leq \Delta : \iff \Gamma \subseteq \Delta;$
- ΓRΔ if and only if (□φ ∈ Γ implies φ ∈ Δ);
- $\blacktriangleright \ p \in V(\Gamma) : \iff p \in \Gamma.$

Soundness Mixed birelational models Completeness of mixed models



Soundness Mixed birelational models Completeness of mixed models



Soundness Mixed birelational models Completeness of mixed models

Theorem

 MixL is sound and complete with respect to concrete models.

Corollary

MixL is sound and complete with respect to mixed models.

Open questions

What next?

Conjecture

The class \mathcal{CM} of all concrete models gives the class of all mixed models such that for all $w \in M$, T_w is a prime theory $(\varphi \lor \psi \in T_w \Rightarrow \varphi \in T_w \text{ or } \psi \in T_w)$.

- Finite model property.
- Including \diamond in the semantical definition.
- Can possibly include more/different logics in this framework:
 - Incomparable logics
 - Many valued
 - Etc.